沈阳蓄电池研究所主办

业务范围:科研成果转让、技术难题的攻关、现场指导、新工艺的采用和推广,蓄电池产品生产许可证企业生产条件审查的咨询等。

新闻中心 更多

图片描述
关于召开2021年全国铅酸蓄电池标准化技术委员会标准研讨会的通知

全国铅酸蓄电池标准化技术委员会全蓄标  [ 2021 ]   第074 号各位委员及有关单位:根据国家标准化管理委员会关于下达2020年第二批推荐性国家标准计划的通知(国标发[2020]37号)及工业和信息化部2020年第二批行业标准制修订和外文版项目计划(工信厅科函[2020]181号)的要求。全国铅酸蓄电池标委会秘书处经研究决定于2021年9月24日在广东东莞召开标准研讨会,为进一步提高标准技术水平,打下坚实基础,填补国家标准及行业标准空白,请有关单位安排人员参加此次会议,现将有关会议事宜通知如下: 序号标准名称计划号标准类型制、修订1铅酸蓄电池用电解液20202749-T-604GB/T制定2铅酸蓄电池用水20202750-T-604GB/T制定3电动摩托车和电动轻便摩托车用铅酸蓄电池2020-0904T-JBJB/T制定                   一、 会议日期:1、报到日期:2021年09月23日,10:00—22:00。2、会议日期:2021年09月24日 全天。        二、 会议地点及联系方式:宾馆名称:方中假日酒店地   址:广东省东莞市茶山镇茶山大道西28号。   三、前往方式1、深圳宝安机场—车程100min—东莞东城城市候机楼(流花公园旁)—约5公里抵达酒店2、虎门高铁站—坐地铁40min—东莞火车站—约2公里抵达酒店   四、会议安排1、领导讲话;2、研讨;GB/TXXXX-XXXX《铅酸蓄电池用电解液》GB/TXXXX-XXXX《铅酸蓄电池用水》JB/TXXXX-XXXX《电动摩托车和电动轻便摩托车用铅酸蓄电池》3、落实年会工作相关内容   五、其它事宜1、参会代表每人需交会务费1200元(提示:由于国家限制不能扫码缴纳,准备现金)。统一安排食宿,费用自理2、会议承办单位:东莞市德东科技有限公司。3、会议承办单位联系人:戴吉全 158743556654、详细会议安排请咨询秘书处,联系人:邓继东13889351969(微信同步),刘亮  18309878404,付冰冰13940269968(微信同步)。         二0二一年九月七日附件 温馨提示:疫情期间,请参会代表注意个人防护,广东东莞持绿码通行,中高风险地区需持48h内核酸阴性检测证明。新一届委员如不能参加会议,请向秘书处请假。 2021年广东标准研讨会回执 联系电话:024-25326112   邮箱:xdcbzh@vip.163.com、46072099@qq.com参 会 回 执姓 名单位名称税号手机号码邮 箱大床房标准间  温馨提示:请参加会议代表务必回执,以免影响会议用房间的预定。

作者:沈阳蓄电池研究所新闻中心 详情
图片描述
斥资近900亿元,丰田“电池日”释放了哪些信号

在大洋彼岸的慕尼黑车展正式面向公众开放的同一天,丰田汽车释放了大举进军车用动力电池领域的信号。9月7日,丰田举办了面向海内外投资者和媒体的“电池与碳中和说明会”,宣布到2030年将投资1.5万亿日元(约合人民币881亿元),用于车用动力电池的研发、生产和供应。这场发布会类似于特斯拉和大众的“电池日”,也是丰田汽车首次明确在电池领域大举投资。借此,丰田汽车未来十年的电池战略清晰地展现在世人面前。具体来看,丰田的投资主要用于两方面,一是电池研发,约投入5000亿日元,目标是将每辆车的电池成本降低50%,打造新型锂离子电池,包括固态电池;二是电池的生产与供应,约投资1万亿日元,建成70条电池生产线,使得电池年产能达到200GWh以上。镍氢电池升级,混动车型依然重要首先让我们看一下,丰田规划中的动力电池主要用于什么样的车型?在丰田的电动化战略中,油电混合动力车占据了相当大的比重。丰田于1997年推出了全球首款量产混合动力车——普锐斯,而截至目前,丰田混合动力车的累计销量约为1810万辆。根据该公司预测,到2030年,丰田电动化车辆的年销量将达到800万辆,其中200万辆为纯电动车和氢燃料电池车。这意味着,丰田电动化转型仍以混动为主。这与大众、戴姆勒、宝马、通用等欧美传统车企全面转向纯电动截然不同。与纯电动相比,丰田似乎更希望借助混动技术来减排。丰田首席技术官前田正彦指出,根据丰田的测算,每3辆混动车的二氧化碳减排效果就相当于1辆纯电动车。也就是说,1810万辆混动车的碳减排效果,相当于大约550万辆纯电动车,而这些混动车所搭载的总电池量只相当于约26万辆纯电动车。因此,丰田认为,通过普及混动技术,可使用少量电池实现有效减排。丰田表示,正在全方位研发电池技术。其中,混动车使用镍氢电池和锂离子电池,丰田方面正在不断使之进化升级,前不久在日本上市的新款Aqua搭载的就是丰田汽车与丰田自动织机共同研发的大功率“双极性镍氢电池”,输出密度提升了一倍,今后该电池还将搭载于更多车型。每辆车电池成本削减一半相比之下,插电式混动车和纯电动车采用的是锂离子电池,对此,丰田的研发重点在于降低成本和提升耐久性能。丰田正在抓紧研发,目标是在2030年之前提供升级版的新型锂离子电池,主要路径包括:液态电池的材料进化、电池机构革新、全固态电池。其中,搭载丰田全固态电池的电动汽车于去年8月正式取得牌照,开启路试。另外,为了解决电池寿命短的问题,丰田将继续以开发固体电解质材料为主进行研究。前田正彦表示,丰田看好固态电池,预计在2025年之前将下一代电池投入实际应用。为了推广纯电动汽车,降成本是关键。丰田希望通过对车辆与电池的一体化研发,在2030年前将每辆车的电池成本降低50%。具体而言,通过开发无钴、无镍等更廉价的材料,改革制造流程与电池结构等,将单个电池成本降低30%以上;通过车辆热管理、效率控制、减少阻力等方式,逐步将每公里的耗电量减少30%以上,相当于缩减30%的电池容量,从而削减30%的成本。也就是说,电池和车辆两个层面的降本效果叠加起来,最终使得每辆车的电池成本降低50%。电池年产能200GWh,70条生产线除了研发,构建电池生产和供应体系,已经成为主流车企保障自身电池稳定供应的重要手段,丰田也不例外。在本次活动中,丰田更新了电池产能目标,此前预计的是到2030年,电池产能达到180GWh,而今更改为200GWh以上。相比之下,丰田目前的电池年产能约为6GWh,也就是说,未来十年,其电池产能将膨胀30多倍。生产方面,丰田执行董事、首席制造官(CPO)、生产本部本部长冈田政道介绍道,丰田计划到2025年建立10条电池生产线,而后在2026~2030年间,每年新建10条生产线,最终建成70条电池生产线,从而供应纯电动车。电池工厂具体地点尚不明确,但预计将与海内外合作伙伴协作完成。当然,丰田的电池产能预期并不是最高的。例如,大众集团计划到2030年在欧洲建立6座电池工厂,总年产能达到240GWh。不过,需要注意的是,丰田作为全球数一数二的汽车巨头,此前对纯电动技术一直持怀疑态度,而今,前田正彦明确表示,丰田之所以增加电池投资,主要是基于纯电动车的推广潜力,其认为“纯电动车的推广比预期的要快,其零排放的特点对于广泛采用可再生能源的地区而言非常重要”。很明显,随着丰田在电池领域大举投资,其电动化尤其是纯电动车有加速趋势。

作者:张冬梅 详情
图片描述
特斯拉成立能源交易团队:为电池和可再生能源项目提供支持

9月9日消息,特斯拉网站和职业社交网站LinkedIn上的信息显示,这家电动汽车制造商正在组建能源交易团队,以支持其电池和可再生能源项目。特斯拉能源交易和市场运营主管朱利安·拉米(Julian Lamy)本周在LinkedIn上发帖透露:“我正在特斯拉组建新的团队,专注于能源交易和市场运营。这个团队将推动特斯拉全球电池+可再生能源项目团队的表现,积累能源批发市场的专业知识,并支持特斯拉自动化能源交易平台AutoBidder的开发。”拉米链接到了一份“能源市场高级能源交易分析师”的招聘职位。在相关工作描述中,听起来很像是能源资产领域的股票交易员:我们正在寻找高级能源交易分析师,以推动世界上最大电池储存项目的持续性能改进。这包括特斯拉电网规模的电池团队(即传输级)和虚拟发电厂(即在配电级聚合住宅电池)。使用特斯拉的内部自动化交易平台AutoBidder,你将负责将电池竞标到多个能源批发市场,确保资产符合合同义务,并遵守市场规则。这包括开发和执行交易策略、监控自动化交易系统、平衡不同交易策略的风险和预期回报、在关键市场机会期间做出实时交易决策、分析资产表现和市场状况、开发支持分析的工具、作为团队研发过程的一部分提出并开发新的算法想法和策略、向广大受众传达复杂的情况,以及向内部和外部利益相关者展示。该职位要求具备电力批发市场的专业知识,求职者将利用Autobidder“领导参与批发能源市场的电池、太阳能和风能项目的交易和实时运营”。根据该公告,高级能源交易分析师职位将设在加州帕洛阿尔托。AutoBidder是个能源资产实时交易和控制平台,如特斯拉PowerPack、Powerwall和Megapack,通过机器学习进行优化,以更好地利用这些资产,并更直接地实现货币化。Autobidder于去年首次推出,今年早些时候的数据显示,该平台已经管理着超过1.2GWh的能量储存。随着特斯拉部署更多能源资产,该平台对该公司的重要性与日俱增。特斯拉显然希望建立一支由这些交易员组成的完整团队,以管理他们日益增长的能源资产,这些资产通过使用Megapack的大型新电池项目快速增长,但最近也在建设新的虚拟发电厂。上个月,特斯拉在加州宣布了其第一个完全使用Powerwalls的内部虚拟发电厂。最终,该公司希望通过这种商业模式成为全球性电力供应公司。招聘公司Aurex Group的董事总经理约翰·麦克莱伦(John McClellan)表示:“特斯拉能源部门正在成为住宅和电力供应领域的分布式能源供应商。”特斯拉正在扩大业务,包括家庭太阳能和大型电池存储设施,但目前这只占其总收入的一小部分。上个月,特斯拉能源投资公司(Tesla Energy Ventures)向得克萨斯州电力委员会提出申请,希望成为零售电力供应商。早在去年10月份,马斯克就告诉投资者:“特斯拉能源部门将成为特斯拉未来活动的重要组成部分。从一开始,特斯拉的使命就是加速可持续能源过渡,这意味着以电动汽车的形式进行可持续能源生产和可持续能源消费。”(腾讯科技审校/金鹿)

作者:沈阳蓄电池研究所新闻中心 详情

公告 更多

政策法规 更多

热点资讯 更多

description
磷酸铁锂单月装车量同环比增速扩大 攻城略池下压制三元会成为常态吗?

《科创板日报》(上海,研究员 郑远方)讯,据财联社记者今日从中汽协获悉,8月我国动力电池装车量12.6GWh,同比上升144.9%,环比上升11.2%。其中,三元电池共计装车5.3GWh,同比上升51.9%,环比下降2.1%;磷酸铁锂电池共计装车7.2GWh,同比上升361.8%,环比上升24.4%,同环比增幅较7月(同比235.5%、环比13.4%)均扩大。值得一提的是,就在上个月,磷酸铁锂电池装车量首次超过三元电池。时隔4年,磷酸铁锂又从三元电池手中夺回了“江山”,还大有位置愈发巩固的架势。那么,为何磷酸铁锂能再度崛起?安全性高、循环寿命长等固有属性优点不必再详谈,重要的或许是近几个月来出现的变化。从产业链各环节到终端消费者,价格和成本始终是绕不开的一大关注重点。此前,由于新能源汽车补贴与能量密度挂钩,直接导致磷酸铁锂电池被三元电池逼退到毫无还手之力,市占率一度低至12.8%。据华安证券推算,磷酸铁锂成本约为0.08元/Wh,相比三元锂电池可节省0.15元-0.21元/Wh,对应降低成本65%-72%。现行补贴政策下,带电量55kWh、续航405公里的三元锂电池替换为磷酸铁锂电池,成本可下降4600元至5600元。另一方面,充电桩的日渐普及也驱使着消费者对里程的追求回归理性。由此,市场的追逐重点重新由能量密度转回了成本,而这一转变也推动着主机厂和电池厂的大面积“倒戈”。据韩媒9月3日爆料,此前一直以三元著称的LG能源(LG Energy Solution)去年年底便已开始研发磷酸铁锂电池,最快有望于明年建设试验产线。另外,今年比亚迪王朝系列将全部切换为磷酸铁锂刀片电池,特斯拉Model 3/Model Y、小鹏P7、哪吒U、五菱宏光MINI EV等一众车型也纷纷选择磷酸铁锂,同时还在筹划推出更多相关车款。此外,磷酸铁锂电池的风头渐盛也能从磷化工产业的景气度窥见一斑,需求的高涨甚至带动中核钛白、龙蟒佰利等钛白粉行业龙头集中跨界,试图凭借自身磷矿资源优势占据高点。不过磷酸铁锂与三元电池并非是势如水火的对立关系。业内一般共识为,未来中、低端车型或将以磷酸铁锂电池主导,部分中、高嘉维则以三元占优。中国汽车动力电池产业创新联盟副秘书长马小利直言:“所以基于市场选择和不同车型的消费者定位,交由市场选择最为合理。”

作者: 沈阳蓄电池研究所新闻中心 详情
description
电动车锂电池为什么会爆炸,现在的技术能防止吗?

我们正在迈入能源革命的新时代,但当我们不断眺望电能利用的美好未来时,总不免担忧,锂离子电池安全吗?电动车电池引发的爆炸事故 图片来源:新华网为什么感觉近年锂离子电池爆炸事故频发?无论是电动汽车还是储能电站,都离不开一种关键的器件——电池。几乎所有的电动汽车和七成以上的化学储能电站应用的都是锂离子电池,也就是我们手机和笔记本电脑中使用的这种电池。由于锂离子电池出色地实现了电能源的便携化,助推了我们这个信息时代的发展。也因此,有三位对锂离子电池技术发展贡献最大的科学家获得了诺贝尔化学奖。得益于锂离子电池的发展,其使用场景离我们非常近,我们的手机、相机和蓝牙耳机都需要它,但为什么应用到电动车上,锂离子电池就发生了这么多事故?这其实是一个概率的问题。比如某进口电动车所用的某进口电池号称事故概率仅为一千万分之一,但一辆车上要装8000支这种电池,相当于一千万支电池能够装1250辆电动汽车。也就是理论上1250辆电动汽车中,就有一辆车里的某支电池有可能会发生事故。若这个事故属于电池燃烧或者爆炸级别的事故,就有可能引发其周围的电池发生链式反应,进而造成电动汽车燃烧的大事故。储能电站方面的事故也是如此,相比于一辆电动汽车大概能储存50~100度电,一个储能电池的集装箱体一般能储存1000度电,而一个中大型储能电站常常是几十个这种储能电池集装箱的集合。可想而知,这么大规模的电池用量,偶尔发生事故也很正常。另一方面,电动汽车与储能电站的燃烧、爆炸事故的后果显然要比手机电池严重太多,且目前的消防措施几乎对其无能为力。当然,我们也不能忽视这个消息传播如此迅速广泛的时代,那些时而造成人员伤亡的严重事件,便更容易造成较大的社会影响。为什么锂离子电池会燃烧甚至爆炸?锂离子电池是一种含能元器件,其主要由正极、负极、电解液和隔膜等组成。充电后其正极一般为过渡金属氧化物,其具有较强的氧化性;负极则为内部嵌入大量锂的石墨,有极强的还原性。电解液一般为有机酯类,具有熔点低、可燃等特点。特别要注意的是,我们生活中的鞭炮也是一种含能器件,许多人知道其内含火药的成分为一硫(磺,化学式S)二硝(石,化学式KNO3)三木炭,其中硝石为强氧化剂,硫磺与木炭为还原剂,当外界给出一个超过120度的刺激后,鞭炮内氧化还原反应剧烈发生,释放大量气体与热量,火药燃烧、鞭炮爆炸。由此可见,理论上锂离子电池本征便可能发生高放热的氧化还原反应,且其内含的可燃电解液也会助推此反应,带来燃烧甚至爆炸的后果。锂离子电池燃烧或爆炸的威力有多大呢?光从其储存电能的角度来说,150Wh/kg能量密度的普通锂离子电池的电能大约是TNT炸药爆炸产生热量能量密度的1/10。近年来的研究确凿地证明,锂离子电池事故中正负极在特殊情况下可直接发生剧烈氧化还原反应,甚至铝和铜集流体也能以还原剂的方式直接参与反应,产生的热量要显著高于电池储电对应的能量。一般来说,在密闭空间中锂离子电池发生安全事故,其最高温度能达到800℃以上,而一支43.4g重锂离子电池发生爆炸时的爆热相当于5.45gTNT,达到TNT当量的1/8 。而锂离子电池之所以不以剧烈的氧化还原反应而是以电化学反应的方式将其内部的化学能可控地、源源不断地转化为电能,是因为隔膜将正负极有效地物理隔离及电子传导绝缘(以及导离子电解液的存在)。但是,当出现各种内因或外因导致隔膜失效,进而正负极直接接触后,这种内短路会带来电能被瞬间释放,产生大量热并带来高温,瞬间破坏电池内部化学体系稳定,导致负极电解液、正极电解液、负极与正极之间,甚至集流体也参与的氧化还原反应,瞬时放热升温、造成电解液瞬间气化进而夹杂着正负极活性物质粉末喷出电池壳体,带来燃烧甚至爆炸的恶果,这个过程叫作热失控(简称TR)。根据近年来电动汽车事故场景统计,大部分事故都是由于“自燃”,包括静置时(电池无充放电)、行驶时(电池放电)和充电时。少部分是出现外部热源、碰撞和控制电路失效时发生的事故。“自燃”属于自发性热失控,后者统称为各种滥用条件下(热滥用、机械滥用、电滥用)的热失控。尽管两类情景下热失控最终带来的升温、燃烧等机制相似,对其展开研究的难易程度却有很大的差别。目前,滥用条件下的热失控由于激发条件可控,近年来研究取得很大进展,基本能够定量描述各种滥用条件激发热失控的机制及随后的危害情况。但自发式热失控,由于其诱因复杂不好预测,热失控后的电池又被完全破坏很难复原热失控前的微观状况,成为研究难点。为什么难以预测锂离子电池热失控?自发式的热失控是目前电动汽车最大的安全焦虑。为什么其难以预防?这都要从电池的制造说起。如果每一支电池从微观的电极材料颗粒、隔膜到宏观的极片、壳体封装都100.000000000%的完全一致,那用几千个或几十万个这种电池做成的电池组肯定会有更好的安全特性。你可能注意到这里百分之百的表达方式有点不一样,后面有十来个零,这代表着一种理想的预期——电池全尺度的高一致性。众所周知,电池不一致性的后果就是性能劣化的电池会更快地衰变,有些钝化失活,直接失效;也有部分走向了另一条截然不同的道路——内短路进而热失控、燃烧、爆炸。那这种危害最大的自发式内短路为啥就不能预测呢?原因主要一是这个衰变到内短路过程十分缓慢且外界电压信号不明显,二是出事的电池都直接在几分钟内直接进入破坏式的热失控,电池全毁,证据无法回溯,也使得此领域研究进展缓慢。真正精确模拟自发式内短路的过程,目前仍是一个难题。另外,电池类似一个黑箱,尽管我们能用一些电化学谱学和原位CT的技术手段从外部监控个别电池的电化学反应与内部微观结构变化,但我们无法预测数千万支电池中哪支会在数个月或数年后“猝死”并对其全生命周期的演变进行细致研究。每一支电池刚出厂时都几乎绝无自发性热失控风险,但哪支在半年后或三年后的某个夏夜或冬晨“猝死”并造成大规模燃烧事故?现在很难预测。这像不像我们人体?电池原料参数与制造工艺类似我们的基因,电池充放电制度如同我们的饮食习惯,电池使用环境温度变化如同生长环境。随着成长,总有一些人的身体中会产生长期炎症或者更严重的血管病变,进而在短期有可能发展成癌症或造成卒中,这就类似电池内短路及随后的热失控。如果我们有能力对地球上每个人24h的健康状态进行实时监控,那我们就能够尽早发现异常并进行处置,减少癌症与卒中风险,但这显然不符实际。同样,我们也难以承担对每一块电池进行最全面的实时监控,现在大致能对数十块电池组成的一个模组装配监控电压和整体温度的装置,而这离研究与预防电池单体自发性热失控的要求显然差距甚远。能够确定的一点是,提高电池的一致性能提高电池组的安全性和可靠性。然而,完美的一致不可能做到,单说电池正负极活性物质的颗粒,其每一个的形状、表面状态、缺陷等特征,只要放到分辨率足够高的设备下都能看出差别。除了原料,电池制备还涉及数十道复杂的工序,想让电池保持一致非常困难。尽管现在动力电池产业投资动辄数亿就是为了获得更高的加工精度,但锂离子电池众多的原料和复杂的制备工序使得一致性的提升成为一项永无止境的任务。电动汽车当然还会继续发展,我国也将继续推广大规模储电技术在能源体系中的应用。根据我国能源结构现状,电动汽车在我国中长期能源战略与未来可持续发展具有重要地位。相信随着电池技术体系的持续高速发展,未来5~10年,其可靠性与安全性必将显著提升。但是,完全杜绝锂离子电池的燃烧事故,几乎是不可能的。当然,在尊重客观现实的情况下,还有很多提升安全性的工作可以展开。首先是创新的预警技术,比如斯坦福大学近期报道对氢气信号的灵敏捕捉能把预警锂离子电池热失控的时间前推5分钟,这足够电动汽车上的人员逃生的了。另外,电池的“自毒化”技术也比较有效,其机制是当电池发生热失控的前期,能够释放出一些特殊化学物质使得电池内部钝化“瘫痪”,打断了热失控的链条。正视锂离子电池安全性,大力发展创新高效的安全性提升技术,持续提升电池制造一致性。总有一天,这类“爆炸性”新闻,将不再在我们生活中出现,我们可以安心地使用电动车。致谢:感谢清华大学核研院王莉与车辆学院冯旭宁两位老师提供的相关资料及有益讨论。

作者: 张浩 详情
description
可替代贵金属催化剂,天津大学团队将锂电池废料变废为宝

由于高能量和高功率密度,锂离子电池已成为便携式电子产品和电动汽车的主流电源。随着锂离子电池产品的普及,大量废旧电池的出现,也将对生态环境保护造成压力。近日,天津大学教授胡文彬、陈亚楠团队在《中国科学材料》发表研究论文《变废为宝:富缺陷镍掺杂磷酸铁锂用于高效电催化析氧反应》,利用简单浸渍法结合电化学原位转化,可将废旧电池正极材料磷酸铁锂转变成高效的析氧反应电催化剂。废旧电池正极材料中含有的铁元素是重要的金属矿产资源,并作为多种催化剂的主要成分广泛应用于工业催化领域。受此启发,胡文彬、陈亚楠团队尝试通过合理设计将废弃电池中的磷酸铁锂材料转化为高活性的纳米催化剂,通过引入镍元素激活电池废料中的惰性铁元素,获得了高活性镍铁基纳米片催化剂。在催化反应过程中,近球形微米磷酸铁锂颗粒会自发转化为超薄纳米片,这一结构变化产生了大量开放空间结构,从而大大加快了催化反应过程。另一方面,镍和铁之间的协同作用还降低了电催化反应所需要的能量,进而提高了其催化活性。用此方法新获得的镍铁基纳米片催化剂,克服了废弃电池中磷酸铁锂材料颗粒尺寸大、比表面积小、活性差等问题,在催化性能测试中表现出了与其他贵金属催化剂相媲美的优异催化活性和稳定性。据介绍,作为一种绿色且通用的方法, 研究有望实现用低成本的电池废料替代价格昂贵的贵金属催化剂,具有材料损耗低、生产周期短、产率高、可放大等特点,体现出较高的工业价值、成本优势和市场潜力。废旧电池材料的低成本高效回收利用,也将为我国节能减排以及碳中和做出贡献。

作者: 沈阳蓄电池研究所新闻中心 详情
description
川恒股份“牵手”国轩集团 拟建电池用磷酸铁生产线

川恒股份9月7日晚公告称,公司与国轩控股集团有限公司(下称“国轩集团”)签署《战略合作框架协议》及《投资合作协议》,拟在磷系电池材料、氟系电池材料领域开展合作。双方将共同规划建设不低于50万吨/年产能的电池用磷酸铁生产线。川恒股份称,协议的签订对公司当年经营业绩不会造成的影响。未来随着合作深入,预计将对公司经营发展产生积极影响。川恒股份是磷化工领域的领先企业,已经形成矿山开采、磷酸盐产品生产、磷化工技术创新、伴生资源开发利用、磷石膏建筑材料、磷营养技术服务、产品销售为一体的磷化工循环经济产业群,公司产销能力约60万吨/年。国轩集团则是一家总资产超过500亿元的产业集团,下设地产、工业、新能源运营三大事业部。根据《战略合作框架协议》,双方将在五个方面进行战略合作:设立新材料合资公司,推进在磷系锂电池材料(包括但不限于磷酸铁及磷酸铁锂)方面的研发、生产、销售合作,以及电池回收和资源循环利用等方面的合作探索;成立氟系电池材料合资公司,推进在氟系新能源和新型化学材料(包括但不限于六氟磷酸锂、PVDF)等方面的合作;在新能源锂电产业发展过程中,共同探讨新的技术及产业项目合作方向;在产业合作的基础上,积极探讨资本层面的深度融合;积极商讨国轩集团在建电池用磷酸铁产能的商务合作。根据《投资合作协议》,双方拟共同投资组建合资公司,依托川恒股份的资源和技术优势,国轩集团的市场需求基础,共同规划建设不低于50万吨/年产能的电池用磷酸铁生产线,并根据市场情况和国轩集团需求情况,进一步扩大生产规模,丰富产品类型。公告称,双方合作的目的系为满足川恒股份产业发展需求的同时,为国轩集团提供足够数量、供应稳定,并具有一定价格优势的电池用磷酸铁材料。

作者: 时娜 详情
description
全球第二大电池巨头开始生产磷酸铁锂电池

有着更安全性能、更低成本、更长寿命的磷酸铁锂电池,正在风靡全球。全球第二大电池巨头LG新能源也在布局磷酸铁锂电池:据韩媒THE ELEC报道,LG新能源已于去年年底在韩国大田实验室开始研发磷酸铁锂电池技术,最快有望在2022年建设一条中试线。据悉,LG新能源的磷酸铁锂电池的封装形式为软包。并且,LG新能源的母公司LG化学也将参与到磷酸铁锂电池业务中,韩媒预测称,“LG化学可能会与其中国合作伙伴成立一家合资公司,为LG新能源供应生产磷酸铁锂电池所需的原材料。”重新崛起的磷酸铁锂电池早在“十一五”期间,我国全面开展了电动汽车的关键技术研究和大规模产业化技术攻关,磷酸铁锂电池是当时的重点支持项目之一。2008-2012年,国内的磷酸铁锂电池企业数量暴增。不过,在随后的“里程焦虑”中,宁德时代借助能量密度补贴,靠着“三元锂电池”帮助中国动力电池技术突围。在翘翘板的另一端,之前凭借着磷酸铁锂电池做到行业第三、并且市场占有率一度达到25%的沃特玛,宣布破产。磷酸铁锂电池陷入低谷。2020年,随着锂电池的能量密度开发逐渐达到上限,国家补贴也渐渐退潮,在市场化以及磷酸铁铁电池技术不断取得进步的背景下,磷酸铁锂电池重新崛起。2021年5月,国内磷酸铁锂电池的产量方面实现了对三元锂电池的反超:当月,磷酸铁锂电池产量8.8GWh,占总产量63.6%;三元电池产量5.0GWh,占总产量36.2%。这是单月磷酸铁锂电池产量超过三元电池,也是近3年来的首次。2021年7月,磷酸铁锂电池则在装车量方面实现了对三元锂电池的反超:当月,我国磷酸铁锂电池共计装车5.8GWh,同比上升235.5%,环比上升13.4%;与之相对的是,三元电池装车仅5.5GWh,虽然同比上升67.5%,但环比下降8.2%。这是磷酸铁锂电池首次在装车量方面领先于三元电池。全球第二大电池巨头的转变目前,LG新能源是全球第二大动力电池巨头,仅次于宁德时代。LG新能源的母公司是LG化学。公开资料显示,LG化学成立于1947年,自1995年起LG化学开始了对锂离子电池的研究,并于1999年LG化学成为韩国国内首个量产小型锂离子电池的企业。2000年,LG化学开始在密西根研发基地研发动力锂电池,2009年LG化学首次将自主研发生产的锂离子电池应用于商用电动车。2020年12月LG化学将电池事业分拆基准出来另设为新公司(现LG新能源),目前LG新能源正在申请IPO。在动力电池领域,2020年LG新能源曾一度超越宁德时代排名全球第一。直至2020年9月,宁德时代才“抢”回全球第一的王座并持续至年底。而从2020年全年来看,宁德时代动力锂电池出货量市场份额仅高于LG新能源1%,动力锂电池装机量市场份额高于LG新能源2.2%。在2021年7月,韩国市场研究机构SNE公布的2021年5月全球动力电池装机量情况显示,LG新能源反超宁德时代,以同比增加3.7倍至5.7GWh居全球动力电池装机量第一。不过从1-5月的情况看,宁德时代仍然以22.1GWh的装机量位居第一,市场份额达27.1%;LG新能源以0.4GWh之差排名第二,市场份额为26.6%。值得注意的是,因电池存在问题,现代汽车召回的电动汽车中,LG新能源“背锅”并预计损失超过56亿元人民币;在通用两次召回的电动汽车中,也与LG新能源的电池缺陷有关。据了解,通用的召回预计将耗资10亿美元(约65亿元人民币),通用汽车表示正在考虑向电池供应商LG新能源索赔。LG新能源亟需提升动力电池的安全性。刚好,磷酸铁锂电池是一个选择,LG新能源进军磷酸铁锂电池领域水到渠成。这就是LG新能源的转变。车企也在转变新能源汽车的老大,当属特斯拉。现实的情况是,特斯拉正越来越多地使用磷酸铁锂电池。在今年1月和2月,特斯拉CEO马斯克曾多次公开表示,特斯拉将把一些电动汽车的三元锂电池换成磷酸铁锂电池。7月27日,特斯拉召开了2021年第二季度财报电话会议,马斯克在电话会中透露,特斯拉将在电池构成上进行转变,类似使用2/3的磷酸铁电池和1/3的镍电池。8月21日,来自推特的爆料消息称,2021年10月1日起,特斯拉美国加州弗里蒙特工厂生产的Model 3/Y标准续航版,将使用来自中国的磷酸铁锂电池。除了特斯拉,计划2024年推出电动汽车的科技巨头苹果公司,也大张旗鼓地宣称将使用磷酸铁锂电池,并称这是出于安全性的考虑。国内企业对磷酸铁锂电池的接受程度则更高,据统计,即使在新能源乘用车领域,国内磷酸铁锂电池的渗透率已达到30%,全部车型均将搭载刀片电池的比亚迪自不必说,小鹏、蔚来等车企也已经或即将用上磷酸铁锂电池。总结磷酸铁锂电池正在以其更安全、更低成本、更长寿命的优势,得以更大规模的应用。LG新能源已经布局磷酸铁锂电池,未来,不排除松下、三星SDI、SKI等海外电池巨头也布局磷酸铁锂电池的可能!

作者: 沈阳蓄电池研究所新闻中心 详情
description
重大政策动向:进一步提高锂、钴、镍保障体系,前瞻部署全固态金属锂电技术......

在4日举行的2021中国汽车产业发展(泰达)国际论坛开幕大会上,来自工业和信息化部、科学技术部、生态环境部和商务部的官员透露了下一步推动新能源汽车行业发展的政策思路,包括中国一汽在内的多家企业也介绍了新能源汽车领域的发展计划。进一步提高锂、钴、镍保障体系官方数据显示,今年1-8月新能源汽车产销预计超过170万辆,同比增长两倍,市场渗透率超过10%,L2级智能网联市场占比达到20%。在中国汽车技术研究中心有限公司党委书记、董事长、总经理安铁成看来,供应链安全问题已上升至国家战略高度,下一阶段亟需通过打破出口限制和突破技术封锁多措并举,着重围绕半导体芯片、高精度元器件、高端基础材料、工业软件系统等“卡脖子”领域,打通产业链断点、堵点,构建完整、安全、高效的汽车供应链体系。工业和信息化部副部长辛国斌表示,将深入推进新能源汽车产业发展规划,与相关部门统筹综合施策,起到新成效,见到新实效。如发挥部级联席会议制度,统筹加快新能源汽车发展系列政策举措,保持相关支持政策连续稳定有效衔接。进一步提高锂、钴、镍保障体系。辛国斌进一步表示,要补齐产业短板,提升全产业链水平,实施强链补链行动,围绕补短板贯通技术攻关,平台支撑和示范应用环节,加快车用芯片、操作系统等研发和产业化,引导企业优化供应链布局,提高产业链稳定安全水平和竞争力。同时,研究提升新能源汽车安全技术标准,推动企业健全安全运行监测体系,加大产品一致性检查力度。组织企业开展汽车数据安全、网络安全、软件升级等方面自查。加强软件升级备案管理,研究智能网联准入规范。组织实施国家重点研发计划新能源汽车专项目前新能源汽车技术创新不断取得新进展。快充技术实现充电5分钟,续航增加200公里,钠离子电池超过每公斤160瓦时,并取得产业化突破,为产业可持续发展提供动能。辛国斌表示,将立足电动化、网络化、智能化发展趋势,同步推动基础设施、数据平台和标准法规完善,协同推进电车智能、智慧道路、通讯网络、云控技术发展。科学技术部高新技术司副司长续超前介绍,我国新能源汽车仍然存在若干痛点需要高度关注,比如汽车芯片短缺的问题。据悉,“十四五”期间科技部将坚持电动化、智能化、网联化发展方向,按照新的三纵三横的布局,组织实施国家重点研发计划新能源汽车专项。续超前提到,具体举措上,围绕电动汽车产业链最关键的动力电池,前瞻部署新体系动力电池,全固态金属锂电池技术,开展无钴动力电池和工业混合态锂离子电池开发。围绕新能源汽车产业链核心的燃料电池和储氢系统,和固体氧化物电池,车载液氢系统颠覆技术,重点突破高功率燃料电池电堆、高功率、长寿命燃料电堆等核心瓶颈技术等。围绕新能源汽车产业链共有环节,基于新材料和新器件的电驱动系统,高性能电驱动技术,支持线控底盘、高精度自动驾驶、动态地图,智能网联汽车关键技术研究,开发整车轻量化、模块化技术。编制发布汽车产业低碳发展的技术路线图“绿色低碳转型已成为世界潮流,我国将面临巨大的挑战,发展公共交通、智能交通、电动汽车、氢燃料汽车等零碳汽车是交通领域技术竞争的高地之一,也是实现碳达峰碳中和的核心举措。”中国气候变化事务特使解振华认为。辛国斌透露,工信部将启动公共领域车辆全面电动化城市试点,组织行业机构编制发布汽车产业低碳发展的技术路线图。对此,江汽集团党委书记、董事长项兴初认为,应尽快明确低碳产业发展路线图,在实现双碳目标整体布局仍缺乏中长期规划,碳中和细则尚未出台,加上减碳投入规模巨大,大部分车企处于高技术的投入期,希望有关部门明确减碳时间表和具体要求,指导车企用更好的行动实现双碳目标。生态环境部大气环境司副司长吴险峰表示,下一步将深入打好空气污染防治攻坚战,构建绿色低碳格局。比如,优化和调整车队清洁化水平,加强煤炭、石油、矿石、建材等大宗货物中长途运输以铁路、水路、管道为主,短途采用新能源车辆的运输格局,推进多式联运,推动新能源车在更多领域、更大范围应用等。“全面提升我国机动车排放国际影响,带动机动车内燃机、零部件、测试设备等相关环保产业走出去,实现环境要求倒逼产业优化发展的作用,实现环境与经济效益的双赢。”报废车市场等方面仍有较大发展空间商务部市场运行和消费促进司二级调研员宋英杰表示,当前我国汽车市场进入结构调整转型升级的关键时期,从国际成熟汽车市场发展来看,我国在新车增量市场、二手车交易存量市场、报废车市场以及汽车后市场方面都有较大的发展空间。目前,我国回收体系逐步健全,回收企业截至今年7月底达873家,比去年底增加了近百家。今年1-7月回收企业回收报废机动车增长37.8%,比2019年增长23.5%,回收资源利用率水平不断提高。尤其是五大总成可以再制造后,对零部件再制造的关注明显提高,企业数量不断增加,再制造产品节能减排效果非常显著。据有关机构测算,每再制造一台发动机可以减排二氧化碳70公斤。宋英杰介绍,下一步将继续着眼于汽车全生命周期,紧密结合碳达峰碳中和目标,抓住新车、二手车、报废车、汽车后市场环节,持续发力重点做好以下工作。一是深化流通领域放管服改革,深化放管服管理措施,着力解决制约汽车流通与消费的突出问题。促进汽车全链条高效流通,激发汽车市场活力。二是进一步完善汽车流通政策规定,加快修订二手车管理办法,机动车强制报废规定等法规,突出市场配制资源作用,强化事中事后监管,加强梯次消费、绿色循环的新发展格局。三是服务双碳目标实现,加强部门协同,持续促进新能源汽车消费使用,巩固新能源市场稳步增长良好势头。完善新能源汽车报废体系,促进全产业链条发展。智能新能源汽车新型生态初现安铁成表示,当前,汽车与智慧城市、智能交通、清洁能源、信息通信等领域加速融合,汽车与相关产业的边界逐渐模糊化。安铁成谈到,高科技企业竞相入局,智能新能源汽车新型生态初现。汽车电动化、智能化、网联化趋势变革带来的技术需求,持续吸引互联网、ICT企业纷纷布局智能新能源汽车领域,新能源汽车已成为智能网联技术的最佳载体。同时,在数字经济、5G和新基建的加持下,围绕C-V2X构建了包括通信芯片、高精度定位、路侧RSU、整车制造等较为完整的产业链生态,智能新能源汽车从单车智能向车路协同演进步伐进一步加速。汽车产业也由传统的以整车企业为主体的“链式关系”向以生态主导型企业为核心的“网状生态”转变。中国第一汽车集团有限公司董事、党委副书记王国强表示,到2025年全集团的新能源车占比将超过20%,自主乘用车占比包括奔腾要超过30%,红旗品牌超过40%,到2030年争取实现绝大部分自主乘用车电动化。“当前我们与吉林省正在共同打造绿色吉林的项目,以首款定制红旗EQM5为核心,创建车电分离的商业模式和运营模式,加速在吉林省落地。未来将以长春和吉林省的模式为范例,走出山海关,天津将作为重要一站。”王国强说。东风汽车集团有限公司董事长竺延风也表示,将坚持电动、混动、氢动等绿色低碳技术路线并举,加快发展新能源汽车,2024年将实现主力乘用车品牌全新车型电动化。在氢燃料领域,加快掌控关键核心技术,自主研发的氢燃料乘用车、商用车实现在不同场景下的产业化运营。

作者: 李苑 详情
description
铅酸蓄电池采用哪种方式充电

铅酸蓄电池常见的充电方式有恒流充电、恒压充电、浮充电、过充电等几种。充电时一般分为两个阶段进行;第一个阶段看铅酸蓄电池容量设定,容量大一些的充电电流可以选择大一点的,例如60~100Ah蓄电池可以选择充电电流为夏季一般用10A充电电流;其他季节用15A充电电流,充电6~10h左右。当铅酸蓄电池电压升到最大值(即6V蓄电池升至7.5V,12V蓄电池升至15V,24V蓄电池升至为30V)时,第一阶段充电结束。第二阶段以第一阶段充电电流的1/2继续充电3~5h,使蓄电池升至(6V升至7.8V,12V电压升至15.5V,24V电压升至为30V)即可。当蓄电池充足电时,蓄电池电压上升至额定值,电解液密度不再变化,极板周围有剧烈的气泡冒出。蓄电池充电注意事项如下a.严格按规范要求操作。b.当电解液温度超过40℃时,应降低充电电流;当温度上升至50℃时应停止充电,并采取人工冷却。c.充电时一定要将加液盖打开,充电后要过一段时间再盖盖,以剩于气体从蓄电池中逸出。d.充电电路中各接头要接牢。正确放电。当蓄电池充足电时,即可放电。正确掌握放电深度是保证蓄电池良好工作状态、延长使用寿命的关键。因此,在放电过程中,应定时检查放电电压、电流,电解液密度、液温等数据,分析和确定放电深度,并适时充电。蓄电池的放电容量随着放电电流的增大而急剧减少。若在10h放电率时蓄电池的容量为100%,则在3h放电率时蓄电池的容量减少为75%。因此,不同用途的蓄电池使用不同的放电率(放电电流)。当蓄电池整体电压降至2.1V,电解液密度降至1.18g/cm时,应停止放电,以防蓄电池深度放电造成损坏。再者,当发现蓄电池出现以下情况时,应对蓄电池进行过充电,以使其恢复正常使用:a.24V蓄电池放电至电压为21V以下;b.放电终了后停放1~2昼夜未及时充电;c.电解液混有杂质;d.极板硫化。过充电的方法是,正常充电终了后,改用10h放电率的一半电流继续充电,在电压和电解液密度均为最大值时,每小时观察一次电压和电解液密度。若连续观察4次均无变化,而极板周围冒气泡剧烈,即可停止过充电。在正常情况下,铅酸蓄电池的维护、保存比镉镍蓄电池简单得多,铅酸蓄电池的使用寿命为8~10年,若使用维护不当,其寿命大打折扣。铅酸蓄电池的正常参数为:电解液的密度为1.285g /cm ³(20℃),单个单格电压为2.1V。使用和维护铅酸蓄电池充要注意以下事项①接线应正确,连接要牢靠。为了防止扳手万一搭铁而造成蓄电池损坏,安装时应先接负极,再接两蓄电池间的连接线,最后接搭铁线。拆下蓄电池时,则按相反顺序进行。②每周检查一次蓄电池各参数。电解液液面要始终高于极板10~15mm。发现电解液液面下降,要及时补充蒸馏水,切勿使被板露出液面,否则将损坏极板。电解液不够时,只能加蒸馏水,严禁使用河水、井水、自来水,严禁加浓硫酸,否则会因电解液密度过大而损坏蓄电池。③要根据地区和气温变化,及时调整电解液密度。在气温较高的地区采用密度较小的电解液;寒冷地区则电解液密度宜大些,以防结冰。④平时应经常观察蓄电池外壳是否破裂,安装是否牢靠,接线是否紧固。及时清除蓄电池表面的污垢、油渍,擦去蓄电池盖上的电解液,清除极桩和导线接头上的氧化层,保持蓄电池表面清洁干燥。蓄电池表面太脏,会造成极间缓慢放电,损坏蓄电池。蓄电池极桩处应涂凡士林油保护,防止氧化及生锈。应拧紧加液孔盖并疏通盖上的通气孔。⑤当单个蓄电池电压低于1.8V或电解液密度低于1.15g/cm³时,不要再继续使用,应及时充电。每次充电必须充足,防止欠充电。使用中应尽量增多充电机会,经常保持蓄电池在电量充足的状态下工作。完全放电的蓄电池应在24h内充好电。

作者: 沈阳蓄电池研究所新闻中心 详情
description
2021年中国铅酸蓄电池行业发展现状与供需情况分析

自2003年开始在铅酸蓄电池行业实施工业产品生产许可证制度以来,国家对于铅酸蓄电池行业制造及回收出台了一系列的环保政策、标准,环保和行业准入等政策的严格执行有利于铅酸蓄电池行业集中和产业升级。目前随着我国经济增长方式的转变,国家对铅酸蓄电池行业的环保要求将日益提高。近年来,我国铅酸蓄电池产量较为稳定,但随着5G网络建设的加速推进,铅酸蓄电池劣势逐渐显现,在通信领域的需求将有所下降。多项政策颁布规范行业发展近年来,我国相继颁布多项政策规范铅酸蓄电池行业的发展,调整产业结构,淘汰落后产能企业,提高行业的准入门槛,加强对行业污染的整治力度。2017年以来,国家对中国铅酸蓄电池行业政策制定,主要有两条主线。一条主线针对废铅酸蓄电池的回收利用税收政策的制定,制定的原因在于,传统再生铅企业税收均在11%左右,而民间铅回收企业税收仅为2%-4%左右,甚至有个别企业,将新电池发票当做销售旧电池的进项做了抵扣。上述现象不仅让国家损失了税收,还让铅酸蓄行业出现了“劣币驱良币”的现象。在这条主线下,《危险废物经营许可证管理办法(修订草案》明确了,采用3%低税率扶持政策,从税收的角度合理控制国家废铅酸蓄电池回收税源的规定,2019年1月所颁发的《铅蓄电池生产企业集中收集和跨区域转运制度试点工作方案》则进一步规范了铅酸蓄电池的回收流程。另一条主线,是技术主线,体现在国家对铅酸蓄电池标准的制定上—。2018年,主管部门发布《电池新国标》,明确了铅酸蓄电池行业“轻量高能”技改方向,并将此作为推动电动自行车新国标的一个辅助管理手段。随后,《电动助力车用阀控式铅酸蓄电池》发布,明确了铅酸蓄电池行业“轻量高能”技改方向,并将此作为推动电动自行车新国标的一个辅助管理手段。行业发展形势严峻,而且从目前部分前线电动自行车经销商的反馈可以预知,未来的相关管控将更为严格,行业环境也将更为严酷。近年来铅酸蓄电池产量较为稳定近年来,我国铅酸蓄电池产量较为稳定,均维持在20000万千伏安时以上。根据中国轻工业信息中心公布的数据显示,2019年我国铅酸蓄电池产量为202489万千伏安时,同比增长4%,2020年,我国铅酸蓄电池产量为22736万千伏安时,同比增长12.28%。从结构上看,国内铅酸蓄电池产量主要集中于浙江、湖北和河北,这三个地方的铅酸蓄电池产量约占全国总产量的55%;此外,江苏、安徽、广东三地的铅酸蓄电池产量占比均超过5%,其余地区铅酸蓄电池产量均小于5%。国内铅酸蓄电池产量最高的省份是浙江省,占全国铅酸蓄电池总产量的30%;其次是湖北省,占比为13%;河北省的产量位居第三,占比为12%。通信领域铅酸蓄电池需求将下降通信领域用铅酸蓄电池是通信网络中的关键基础设施,主要用于通信交换局、基站供电的直流系统等。2019年被认为是5G发展元年,主流运营商纷纷加速5G网络部署。2020年以来,我国政府密集部署5G等新基建项目,国内将领先全球,迅速推进5G网络建设,2020年1月26日,工信部发布数据,2020年全年我国新开通5G基站超60万个。同时,这也对基站用电池提出更高要求,铅酸蓄电池劣势逐步显现,各运营商开始纷纷转向锂电池。与4G基站采用的铅酸蓄电池相较,磷酸铁锂电池在安全性、循环寿命、快速充放等方面具备明显优势,可减少对市电增容改造的依赖,降低网络建设和运营成本,是目前最适合国内5G基站储能电池的技术路线。业内人士指出,通信基站后备电源电池由磷酸铁锂电池逐步替代铅酸蓄电池是大势所趋。从技术层面分析,磷酸铁锂电池循环寿命长、充放电速度快、耐高温性能强,能为5G基站降低运行成本、提升运行效率。一般铅酸蓄电池循环寿命为3-5年,充放电次数为500-600次,而磷酸铁锂电池循环寿命达10年以上,充放电次数为3000次以上,也就是说,在基站全生命周期内,如使用铅酸蓄电池,需要更换电池,而磷酸铁锂电池则无需拆换。虽然现阶段磷酸铁锂电池成本费用比铅酸蓄电池高1-2倍,但在5000次循环系统使用寿命下,磷酸铁锂电池成本费用仅为铅酸蓄电池的1/3。从长期运行经济效益来看,磷酸铁锂电池使用成本更低。由于国家政策的大力支持,例如新国标引发电池“轻量化”,直接减少对铅的用量。而锂电梯次电池逐渐替代铅蓄电池,2020年中国铁塔将完全不使用铅蓄电池。较早之前,中国移动通信集团有限公司也发布公告,计划采购不超过25.08亿元的通信用磷酸铁锂电池共计6.102亿Ah(规格3.2V)。公开资料显示,2020年,新建及改造的5G基站磷酸铁锂需求量约10GWh,未来磷酸铁锂电池市场需求仍将持续增加,铅蓄电池需求量将继续下降。一般国内通信基站电池的使用寿命为5年,按照一个基站配备2组48V400Ah铅酸蓄电池计算,每个基站的需求为38.4Kvah。因此,前瞻测算,2020年,我国通信领域新增基站用铅酸蓄电池需求规模进一步下降至2304万千伏安时。注:由于统计局及相关行业协会仅统计每年铅酸蓄电池的产量,前瞻根据国家统计局提供的铅酸蓄电池的产量数据以及通信行业发展趋势,对通信领域新增基站用铅酸蓄电池的需求规模进行测算,此为测算数据。但是,尽管磷酸铁锂电池已在5G基站中广泛应用,其应用技术也已达到现有5G基站备用电池标准,但想要实现磷酸铁锂电池在基站中的规模化应用还有待时日。现有铅酸蓄电池还没有全部退役,磷酸铁锂电池想要全部替换铅酸蓄电池至少还需5-8年时间。此外,磷酸铁锂电池的回收技术门槛高、回收流程复杂、回收价值有限等问题也限制了磷酸铁锂电池的规模化发展,铅酸蓄电池回收工艺成熟,且其回收流程简单,具备一定的经济性。所以,整体来看,锂电化会在部分应用场景中成为趋势,但在用电量大、安全性要求高的场合,铅蓄电池仍有着不可替代的优势,但随着锂电池技术、安全性的不断提高,锂电池对铅酸蓄电池的替代将越来越明显。整体来看,在通信领域,我国基站用铅酸蓄电池需求规模将逐步下降,但要实现锂电池对铅酸蓄电池的完全替代,还需要一定的时间。

作者: 沈阳蓄电池研究所新闻中心 详情
description
美国能源部发布的“储能大挑战”报告(三):锂离子电池和铅蓄电池

中国储能网讯:二.锂离子电池技术锂离子电池广泛应用于固定储能市场和交通运输市场,它们也是消费电子产品中的主要电源。多家琛分析机构预计,锂离子电池在未来10年内仍将占据储能部署的大部分市场份额。储能技术正在从铅酸电池过渡到具有更长的循环寿命和工作寿命的电池,例如锂离子电池。但是,锂离子电池的易燃性是需要在系统工程设计进行改进的问题。而普鲁士蓝类钠离子电池是另一种提供高功率和极长循环寿命的新型电池,可以满足苛刻的直流应用性能要求。美国能源部为此为开发和生产这种电池的一家初创公司提供了资助。1.锂离子电池市场锂离子电池市场是增长最快的可充电电池市场。从2013年至2018年,锂离子电池在所有市场的全球销售额增长了一倍以上。交通运输行业在锂离子电池市场上占主导地位,也是增长最快的行业,各种汽车采用了60%的锂离子电池。根据Avicenne公司发布的调查报告,全球锂离子电池市场规模在2018年为400亿美元,如图9所示,这相当于在全球部署172GWh的电池储能系统,到2019年增至195GWh。几家分析机构预测未来十年的锂离子市场发展趋势。其基本假设以及分析中包括的市场取决于具体的来源。本节概述了这些分析和假设。图9.全球锂离子电池在未来10年在各种市场的应用图10. 彭博社新能源财经公司对锂离子电池在全球各地市场的部署预测图11. Avicenne公司对锂离子电池在全球各地市场的部署预测彭博社新能源财经公司(BNEF)和Avicenne公司预测了2030年全球所有市场的锂离子电池部署情况,分别如图10和11所示。彭博社新能源财经公司预测,锂离子电池在全球消费类电子产品、固定储能市场和运输领域的应用将超过2TWh。Avicenne公司的预测涵盖了以下两种情况的市场以及其他市场(例如医疗设备和电动工具),而两项研究中,都认为交通运输行业将采用90%以上的锂离子电池。彭博社新能源财经公司(BNEF)预计到2030年运输行业采用的锂离子电池容量将达到1.8TWh,而Avicenne公司预计到2030年运输行业采用的锂离子电池容量将达到0.7~1.0TWh。国际能源署(IEA)发布的《2020年全球电动汽车展望》报告只评估了交通运输行业,并按国家和地区预测了混合动力和插电式混合动力电动汽车(xEV)的销量。评估的第一种情况是“既定政策,并基于当前的目标、计划和政策措施。此方案包括各国实现的混合动力和插电式混合动力电动汽车(xEV)部署目标、燃油车辆淘汰计划、购买激励措施,以及针对全球七个主要市场(美国、欧盟、中国、日本、加拿大、智利、印度)。还考虑了原始设备制造商发布的有关扩大混合动力和插电式混合动力电动汽车(xEV)车型范围的计划以及扩大其产量的计划的公告。根据国际能源署(IEA)发布的STEPS方案,到2030年,全球车辆所需的锂离子电池容量为1.6TWh,这与彭博社新能源财经公司(BNEF)估计的1.8TWh相似。图12和图13分别按移动性细分和区域详细说明了国际能源署(IEA)的STEPS方案。如图12所示,轻型车辆是采用移动式锂离子电池的最大类别。而中国拥有最大的移动锂离子电池市场,如图13所示。图12.根据国际能源署(IEA)STEPS情景下预计的全球锂离子电池部署量(按车辆类别:电动客车、轻型车辆、中型和重型车辆)图13.根据国际能源署(IEA)STEPS情景下预计的全球锂离子电池部署量(按地区)锂离子电池容量是根据全球汽车销售量(按类别)以及每种汽车的典型车载电池尺寸估算得出的。国际能源署(IEA)还评估了第二种方案“可持续发展方案”,该方案假设混合动力和插电式混合动力电动汽车(xEV)占据了全球轻、中、重型车辆和公共汽车的30%的汽车销售份额。在这种情况下,到2030年可以增加多达3TWh的锂离子电池容量。图14比较了国际能源署(IEA)的这两种情况。图14. 根据国际能源署(IEA)STEPS情景下,在xEV行业中预计的全球年度锂离子电池部署量尽管有许多其他预测,但欧洲电动汽车市场规模在2020年首次超过了中国,预计2020年将超过100万辆电动汽车。这种增长与欧洲的持续政策和补贴有关,而中国则减少了其电动汽车补贴。例如,德国已设定了到2030年生产710万辆电动汽车的目标,并为每辆新型电动汽车和混合动力汽车提供最高9000欧元的补贴。德国还将在电池的研究和生产上投资超过15亿欧元,计划到2025年开始扩大生产规模。为了支持电动汽车市场的快速扩展,许多厂商都在投资电动汽车充电基础设施。全球电动汽车充电端口目前超过了100万个,这是过去三年总和的两倍。欧洲是电动汽车市场扩张的领头羊,其电动汽车充电基础设施在2017年至2020年之间增长了五倍。在同一时期,中国增长了158%,美国的增长了65%。而在氢燃料电池汽车方面进行了大量投资的日本只增长了30%。与交通运输行业的增长相比,固定储能增长比较平缓。这通常是因为可再生能源通常是成本最低的发电来源,但是需要存储其电力以减缓可变性。而美国是全球固定储能部署的领导者。例如,在太阳能发电设施替代装机容量为9GW的天然气发电设施之后,加州电网估计需要部署装机容量为12GW的储能系统进行平衡。到目前为止,加州公用事业委员会已批准了装机容量总计为5.1GW的电池储能系统,计划到2022年完成部署。2.锂离子电池的制造图15.全球锂离子电池生产区域如图15所示,全球锂离子电池制造的大部分都在中国、美国、亚洲其他国家和欧洲各国。如今,中国以将近全球电池产能80%(电池容量为525GWh)占据市场主导地位。此外,到2025年电池产能将达到1400GWh,其市场占有率超过60%(图16)。相比之下,美国落基山研究所预计2023年全球锂离子电池的生产能力为1300GWh,其中一半在中国。图16.  计划建设(蓝色)或在建(红色)的锂离子电池制造工厂生产能力美国是全球第二大电池生产国,其电池生产能力为当前全球电池生产容量的8%,这主要归功于内华达州运营的特斯拉和机松下公司合资的电池工厂。而如今美国正在建设更多的电池生产工厂,而凭借积极的新法规和政府支持的融资,欧洲的电池制造业有望显著增长。尽管当今中国在电池制造业中已经确立主导地位,但由交通运输行业推动的增长可能会改变未来的全球足迹。欧洲为在本地和区域性增长制定了强有力的政策和激励措施。欧洲电池联盟预测,到2025年,欧洲的电池制造行业规模可能达到2500亿欧元。目前,计划在法国的杜文市和德国的凯撒斯劳滕建设两个大型生产工厂,这些工厂可以为100万辆电动汽车生产电池。法国和德国在电池生产的投资分别为15亿欧元和35亿欧元。图17和图18总结了锂离子电池的四个主要部分的整体制造能力:阳极、阴极、电解质盐和电解质溶液。目前,锂离子阳极主要由石墨组成,并主要由五个国家生产:中国、日本、美国、韩国和印度,分别占到全球产量的76%、13%、6%、4%和1%。锂离子阴极在9个国家和地区生产,其组成随着新的低钴化学技术的发展而变化。超过一半(58%)在中国制造,其次是日本和韩国,它们分别占近17%。美国生产的阴极不到全球的1%。中国制造占多数。图17.全球锂离子电池组件制造分布电池和原料(例如金属)的供应和精炼以及各种锂离子化学物质的分配是锂离子市场上的重要考虑因素,但不在本文档的范围之内。3.锂离子电池研发美国能源部车辆技术办公室已经确定了xEV电池(以及12V起停动力电池)的商业化所面临的主要挑战:成本、性能、寿命、耐受性、回收利用和可持续性。针对这些改进的关键研究领域包括:•快速充电能力•硅阳极•高能的低钴阴极•高压阴极•高压电解液•锂金属阳极•固态电池•电池回收。图18提供了xEV锂离子电池的成本和技术发展趋势。图19概述了候选电池技术及其满足美国能源部(DOE)成本目标的可能能力。由于不同电池技术的差异很大,电池研究还包括多个活动的重点是解决整个电池供应链中的高成本领域。图18.电动汽车锂离子电池的成本和技术趋势图19.未来各种电池技术成本降低的潜力三、铅酸电池铅酸电池如今已经广泛应用在交通运输和固定储能市场用,主要为所有类型的公路和越野车辆提供SLI服务。此外,铅酸电池大量应用在工业部门,其中包括电信行业备份电源、UPS和数据中心以及叉车。如今,用于电网相关储能系统的应用量相对较少。1.铅酸电池市场2013~2018年,全球铅酸电池年销售额增长了20%以上,达到370亿美元。目前,铅酸电池占到所有可充电电池市场的70%以上;铅酸电池销售额的75%来自汽车SLI领域。江森自控公司以233亿美元的销售在汽车行业占主导地位。而Enersys公司以142亿美元的销售额在工业行业中领先。图20和图21分别以应用场合和行业销售额(10亿美元)与储能容量(GWh)的比例展现当前的全球铅酸电池市场情况。图20.按应用划分的2018年全球铅酸电池部署量(%GWh)图21.按公司划分的2018年铅酸电池销售量Pillot 公司预测,到2030年,铅酸电池需求将以5%的年增长率增长(如图22所示)。尽管铅酸电池目前是固定和运输应用(对于SLI)中最常见的电池,但预计到2025年它们的储能容量(GWh)仍将领先,但可能会滞后于销售额。希望在2020年及以后,轻度混合动力和启停混合动力汽车将成为高级铅酸电池的增长领域。图22.预计全球所有市场的铅酸蓄电池需求预计到2025年,新车的销售量将使铅酸电池需求可能小幅增长,届时其增长将趋于平稳(如图23所示)。由于更换电池的时间比较频繁(最短的工作寿命为3年),尽管中型和重型车辆的电池规模更大,但由于它们在总销量中的显著优势,所有SLI应用(GWh)中有70%以上都来自轻型车辆(如图24所示)。图23.彭博社新能源财经公司预计各地汽车销量中铅酸电池产能的增长图24.按类别划分的汽车销量预计铅酸电池产能增加量用于混合动力汽车起停(12V)的铅酸电池是铅酸电池市场潜在的增长领域。微型混合动力汽车比传统汽车节省5%的燃料,其价格比全混合动力电动汽车便宜10倍。如图25和26所示,2017年是固定储能市场铅酸电池快速增长的元年。图25表明,其增长主要是由中国的强劲市场需求推动的,欧洲也有一些增长,而美国的增长则很少。图26详细说明了应用领域细分情况。在2017年之前,固定市场主要是与电网相关的应用,此外工业用途也推动了爆炸性增长。铅酸电池行业厂商认为,基于技术进步和市场发展,铅酸电池在未来的固定式储能市场中仍然具有巨大的商机,其中包括:·投资于电池双极设计以增加能量密度,并降低成本。·用户侧储能和其他对安全至关重要的应用。·电信行业将在发展中国家发展,并用于5G技术的部署。图25全球铅酸电池市场增长主要是由中国的强劲需求推动(2008年~2020年)图26  铅酸电池在各种领域的应用(2008年~2020年)2.铅酸电池在美国的生产在美国,铅酸电池行业的年产值为263亿美元。它们在美国国内生产,并且99%被回收。铅酸电池在美国18个州生产。此外,美国有10个州有电池回收设施,有9个州拥有技术开发设施,还有10个州的公司为铅酸工业提供原材料(例如石墨)或设备。铅酸电池行业已经在美国38个州创造了近25,000个工作岗位(制造。回收、运输、分配和采矿)。图27和28分别显示了美国电池制造设施分布和创造的就业机会。图27.美国铅酸电池行业及相关产业分布图28美国各州与铅酸电池行业相关的工作分布

作者: 刘伯洵编译 详情
description
圣阳电源相继中标中国移动、中国电信两大运营商铅蓄电池集中采购项目

2020年12月3日,中国移动公示了2020至2021年度Ⅰ类铅酸蓄电池产品集中采购项目中标结果,圣阳电源顺利中标,获得约33.8万KVAh份额。12月17日,中国电信公布了普通型阀控式密封铅酸蓄电池(2020年)集中采购项目中标结果,圣阳电源再次顺利中标,获得约30万KVAh份额。至此,2020年两大通信运营商铅蓄电池重要收关招标项目中,圣阳电源均获得客户高度认可,成功中标。圣阳电源将持续为客户提供优质产品和满意的服务,不断提升运营商服务质量,保持客户持续满意。圣阳电源作为国内通信市场备用电源领域的主流供应商,是国内成立时间最早的专业电源制造企业之一,有幸见证并深入参与了国内通信行业的快速发展,并随着国内通信行业及运营商的发展而不断壮大。近年来针对运营商不同工况的不同备电需求,公司依托于30年的行业经验与技术积累,以国家级企业技术中心、博士后科研工作站、CNAS实验室等技术平台为支撑,持续推进技术创新和产品进步,为客户提供更适合实际需求的一体化电源产品解决方案。公司具备覆盖全国的、优良的销售服务网络,持续提供优质的售前、售中、售后等全过程、全方位的7*24小时的技术服务支持。公司以最具性价比的产品和优质的服务践行“关键时刻、值得信赖”的企业理念,本次集采结果也是运营商客户对圣阳电源的又一次高度认可!圣阳电源作为国内领先的绿色能源供应商,秉承“以客户为中心、为客户创造价值”的经营宗旨,以变革创新为动力,面向海内外市场,向客户提供储能、备用、动力、系统集成电源产品和定制化解决方案,是行业内唯一荣获 “中国出口质量安全示范企业”称号的企业。即将到来的十四五,在“新基建”背景下,圣阳电源以专业化、智能化为方向,夯实产业能力,为通信运营商提供更加安全可靠的产品和电源解决方案,助力新基建建设,为建设数字中国贡献力量!

作者: 沈阳蓄电池研究所新闻中心 详情
description
南都电源预中标中国电信铅酸蓄电池集采项目

今日,中国电信发布普通型阀控式密封铅酸蓄电池(2020年)集中采购项目中标候选人公示,南都电源为第一中标候选人,投标报价(价税合计)9.46亿元,公示期为2020年12月18日至21日。(证券时报)

作者: 沈阳蓄电池研究所新闻中心 详情
description
宝马摩托车全球推荐使用猛狮科技(DYNAVOLT)启动电池

近日,在宝马集团(https://www.press.bmwgroup.com/global/registration)的网站,刊登了题为BMW MOTORRAD WORLD TEAM RECOMMENDS DYNAVOLT BATTERIES的文章,文中,宝马车队经理肖恩•缪尔和马克•邦格斯都对猛狮表示了由衷感谢。肖恩表示,在新冠肆掠的2020,如果没有猛狮的支持,车队几乎无法参加今年的WSBK,猛狮在宝马车队中扮演着极其重要的角色,他和他的团队都非常感激猛狮在2020赛季给予的赞助和支持,也期待来年更加深入和密切的合作。马克说,在世界级的摩托赛事上,每一个细节都是成功与否的关键。猛狮提供了可靠、高端的产品,是赛车电池领域的完美伙伴,而想要取得成功,这样强大可靠的合作伙伴必不可少。我们欣赏并赞赏这种合作,并借此机会表示感谢。感谢猛狮!期待扩大我们在赛车和产品方面的合作。熟悉WSBK的人都知道,宝马在2012年曾一度退出WSBK,去年才重回赛道,也是在去年,猛狮开始与宝马车队的合作,并与宝马车队携手走过了两个赛季。在接下来的2021,猛狮也会继续保持对车队的支持,强强合作,定能碰撞出最精彩的火花。比赛用车 BMW S1000 RR赛场精彩瞬间作为国内最早一批做摩托车起动电池的企业,高端电池制造一直是猛狮的核心业务之一。从初入摩托车电池行业,到成为国内摩托车蓄电池出口量最大的领军企业,猛狮科技以独到的眼光在电池制造业创造出属于自己的一片天地,并将“中国制造”推向了国际市场。目前,猛狮科技的摩托车电池产品主要分为三种产品类别,第一类是胶体电池,第二类是具有干荷性能的免维护电池,第三类是普通干荷电池。在行业内,猛狮的摩托车电池产品在性能上具有明显优势,从制造技术和质量管控上都具有世界一流水准。本赛季宝马车队搭载的正是猛狮科技诸多电池产品中的一款——MG52113。这是一款适应于BMWK1600GT、R1200RT、R1100RS、R1150等高端车型的起动胶体电池,对应业内的型号是51913(20HR@19Ah),为保证这款高端产品能获得更高的性能,猛狮设计此款产品为(20HR@21Ah),-18℃CCA 高达310A,远超同业竞品各项性能指标。2021年WSBK赛季即将拉开帷幕,我们也将为大家持续带来赛事精彩报道。WSBK简介世界超级摩托车锦标赛World Superbike Championship,也简称为WSBK,始于上世纪70年代的美国。作为摩托车顶级赛事之一,其迷人之处就在于它所使用的赛车,都是市场上能买到的超级跑车,稍微进行改装就可参赛,普通车迷即使不参赛也可到赛场领略驾驶的乐趣;另外这种比赛的广告效应十分强烈,各大厂家不惜血本进行投入和宣传,这样WSBK越来越受到车迷和观众的喜爱,不断发展壮大。WSBK的赛制采用一场二节制,中间有休息时间,可对赛车修理和调校。比赛后用两节时间相加排出名次,并累计积分,全年积分最高者为年度总冠军,积分最高的车队为年度冠军车队。

作者: 沈阳蓄电池研究所新闻中心 详情
description
磷酸铁锂单月装车量同环比增速扩大 攻城略池下压制三元会成为常态吗?

《科创板日报》(上海,研究员 郑远方)讯,据财联社记者今日从中汽协获悉,8月我国动力电池装车量12.6GWh,同比上升144.9%,环比上升11.2%。其中,三元电池共计装车5.3GWh,同比上升51.9%,环比下降2.1%;磷酸铁锂电池共计装车7.2GWh,同比上升361.8%,环比上升24.4%,同环比增幅较7月(同比235.5%、环比13.4%)均扩大。值得一提的是,就在上个月,磷酸铁锂电池装车量首次超过三元电池。时隔4年,磷酸铁锂又从三元电池手中夺回了“江山”,还大有位置愈发巩固的架势。那么,为何磷酸铁锂能再度崛起?安全性高、循环寿命长等固有属性优点不必再详谈,重要的或许是近几个月来出现的变化。从产业链各环节到终端消费者,价格和成本始终是绕不开的一大关注重点。此前,由于新能源汽车补贴与能量密度挂钩,直接导致磷酸铁锂电池被三元电池逼退到毫无还手之力,市占率一度低至12.8%。据华安证券推算,磷酸铁锂成本约为0.08元/Wh,相比三元锂电池可节省0.15元-0.21元/Wh,对应降低成本65%-72%。现行补贴政策下,带电量55kWh、续航405公里的三元锂电池替换为磷酸铁锂电池,成本可下降4600元至5600元。另一方面,充电桩的日渐普及也驱使着消费者对里程的追求回归理性。由此,市场的追逐重点重新由能量密度转回了成本,而这一转变也推动着主机厂和电池厂的大面积“倒戈”。据韩媒9月3日爆料,此前一直以三元著称的LG能源(LG Energy Solution)去年年底便已开始研发磷酸铁锂电池,最快有望于明年建设试验产线。另外,今年比亚迪王朝系列将全部切换为磷酸铁锂刀片电池,特斯拉Model 3/Model Y、小鹏P7、哪吒U、五菱宏光MINI EV等一众车型也纷纷选择磷酸铁锂,同时还在筹划推出更多相关车款。此外,磷酸铁锂电池的风头渐盛也能从磷化工产业的景气度窥见一斑,需求的高涨甚至带动中核钛白、龙蟒佰利等钛白粉行业龙头集中跨界,试图凭借自身磷矿资源优势占据高点。不过磷酸铁锂与三元电池并非是势如水火的对立关系。业内一般共识为,未来中、低端车型或将以磷酸铁锂电池主导,部分中、高嘉维则以三元占优。中国汽车动力电池产业创新联盟副秘书长马小利直言:“所以基于市场选择和不同车型的消费者定位,交由市场选择最为合理。”

作者: 沈阳蓄电池研究所新闻中心 详情
description
电动车锂电池为什么会爆炸,现在的技术能防止吗?

我们正在迈入能源革命的新时代,但当我们不断眺望电能利用的美好未来时,总不免担忧,锂离子电池安全吗?电动车电池引发的爆炸事故 图片来源:新华网为什么感觉近年锂离子电池爆炸事故频发?无论是电动汽车还是储能电站,都离不开一种关键的器件——电池。几乎所有的电动汽车和七成以上的化学储能电站应用的都是锂离子电池,也就是我们手机和笔记本电脑中使用的这种电池。由于锂离子电池出色地实现了电能源的便携化,助推了我们这个信息时代的发展。也因此,有三位对锂离子电池技术发展贡献最大的科学家获得了诺贝尔化学奖。得益于锂离子电池的发展,其使用场景离我们非常近,我们的手机、相机和蓝牙耳机都需要它,但为什么应用到电动车上,锂离子电池就发生了这么多事故?这其实是一个概率的问题。比如某进口电动车所用的某进口电池号称事故概率仅为一千万分之一,但一辆车上要装8000支这种电池,相当于一千万支电池能够装1250辆电动汽车。也就是理论上1250辆电动汽车中,就有一辆车里的某支电池有可能会发生事故。若这个事故属于电池燃烧或者爆炸级别的事故,就有可能引发其周围的电池发生链式反应,进而造成电动汽车燃烧的大事故。储能电站方面的事故也是如此,相比于一辆电动汽车大概能储存50~100度电,一个储能电池的集装箱体一般能储存1000度电,而一个中大型储能电站常常是几十个这种储能电池集装箱的集合。可想而知,这么大规模的电池用量,偶尔发生事故也很正常。另一方面,电动汽车与储能电站的燃烧、爆炸事故的后果显然要比手机电池严重太多,且目前的消防措施几乎对其无能为力。当然,我们也不能忽视这个消息传播如此迅速广泛的时代,那些时而造成人员伤亡的严重事件,便更容易造成较大的社会影响。为什么锂离子电池会燃烧甚至爆炸?锂离子电池是一种含能元器件,其主要由正极、负极、电解液和隔膜等组成。充电后其正极一般为过渡金属氧化物,其具有较强的氧化性;负极则为内部嵌入大量锂的石墨,有极强的还原性。电解液一般为有机酯类,具有熔点低、可燃等特点。特别要注意的是,我们生活中的鞭炮也是一种含能器件,许多人知道其内含火药的成分为一硫(磺,化学式S)二硝(石,化学式KNO3)三木炭,其中硝石为强氧化剂,硫磺与木炭为还原剂,当外界给出一个超过120度的刺激后,鞭炮内氧化还原反应剧烈发生,释放大量气体与热量,火药燃烧、鞭炮爆炸。由此可见,理论上锂离子电池本征便可能发生高放热的氧化还原反应,且其内含的可燃电解液也会助推此反应,带来燃烧甚至爆炸的后果。锂离子电池燃烧或爆炸的威力有多大呢?光从其储存电能的角度来说,150Wh/kg能量密度的普通锂离子电池的电能大约是TNT炸药爆炸产生热量能量密度的1/10。近年来的研究确凿地证明,锂离子电池事故中正负极在特殊情况下可直接发生剧烈氧化还原反应,甚至铝和铜集流体也能以还原剂的方式直接参与反应,产生的热量要显著高于电池储电对应的能量。一般来说,在密闭空间中锂离子电池发生安全事故,其最高温度能达到800℃以上,而一支43.4g重锂离子电池发生爆炸时的爆热相当于5.45gTNT,达到TNT当量的1/8 。而锂离子电池之所以不以剧烈的氧化还原反应而是以电化学反应的方式将其内部的化学能可控地、源源不断地转化为电能,是因为隔膜将正负极有效地物理隔离及电子传导绝缘(以及导离子电解液的存在)。但是,当出现各种内因或外因导致隔膜失效,进而正负极直接接触后,这种内短路会带来电能被瞬间释放,产生大量热并带来高温,瞬间破坏电池内部化学体系稳定,导致负极电解液、正极电解液、负极与正极之间,甚至集流体也参与的氧化还原反应,瞬时放热升温、造成电解液瞬间气化进而夹杂着正负极活性物质粉末喷出电池壳体,带来燃烧甚至爆炸的恶果,这个过程叫作热失控(简称TR)。根据近年来电动汽车事故场景统计,大部分事故都是由于“自燃”,包括静置时(电池无充放电)、行驶时(电池放电)和充电时。少部分是出现外部热源、碰撞和控制电路失效时发生的事故。“自燃”属于自发性热失控,后者统称为各种滥用条件下(热滥用、机械滥用、电滥用)的热失控。尽管两类情景下热失控最终带来的升温、燃烧等机制相似,对其展开研究的难易程度却有很大的差别。目前,滥用条件下的热失控由于激发条件可控,近年来研究取得很大进展,基本能够定量描述各种滥用条件激发热失控的机制及随后的危害情况。但自发式热失控,由于其诱因复杂不好预测,热失控后的电池又被完全破坏很难复原热失控前的微观状况,成为研究难点。为什么难以预测锂离子电池热失控?自发式的热失控是目前电动汽车最大的安全焦虑。为什么其难以预防?这都要从电池的制造说起。如果每一支电池从微观的电极材料颗粒、隔膜到宏观的极片、壳体封装都100.000000000%的完全一致,那用几千个或几十万个这种电池做成的电池组肯定会有更好的安全特性。你可能注意到这里百分之百的表达方式有点不一样,后面有十来个零,这代表着一种理想的预期——电池全尺度的高一致性。众所周知,电池不一致性的后果就是性能劣化的电池会更快地衰变,有些钝化失活,直接失效;也有部分走向了另一条截然不同的道路——内短路进而热失控、燃烧、爆炸。那这种危害最大的自发式内短路为啥就不能预测呢?原因主要一是这个衰变到内短路过程十分缓慢且外界电压信号不明显,二是出事的电池都直接在几分钟内直接进入破坏式的热失控,电池全毁,证据无法回溯,也使得此领域研究进展缓慢。真正精确模拟自发式内短路的过程,目前仍是一个难题。另外,电池类似一个黑箱,尽管我们能用一些电化学谱学和原位CT的技术手段从外部监控个别电池的电化学反应与内部微观结构变化,但我们无法预测数千万支电池中哪支会在数个月或数年后“猝死”并对其全生命周期的演变进行细致研究。每一支电池刚出厂时都几乎绝无自发性热失控风险,但哪支在半年后或三年后的某个夏夜或冬晨“猝死”并造成大规模燃烧事故?现在很难预测。这像不像我们人体?电池原料参数与制造工艺类似我们的基因,电池充放电制度如同我们的饮食习惯,电池使用环境温度变化如同生长环境。随着成长,总有一些人的身体中会产生长期炎症或者更严重的血管病变,进而在短期有可能发展成癌症或造成卒中,这就类似电池内短路及随后的热失控。如果我们有能力对地球上每个人24h的健康状态进行实时监控,那我们就能够尽早发现异常并进行处置,减少癌症与卒中风险,但这显然不符实际。同样,我们也难以承担对每一块电池进行最全面的实时监控,现在大致能对数十块电池组成的一个模组装配监控电压和整体温度的装置,而这离研究与预防电池单体自发性热失控的要求显然差距甚远。能够确定的一点是,提高电池的一致性能提高电池组的安全性和可靠性。然而,完美的一致不可能做到,单说电池正负极活性物质的颗粒,其每一个的形状、表面状态、缺陷等特征,只要放到分辨率足够高的设备下都能看出差别。除了原料,电池制备还涉及数十道复杂的工序,想让电池保持一致非常困难。尽管现在动力电池产业投资动辄数亿就是为了获得更高的加工精度,但锂离子电池众多的原料和复杂的制备工序使得一致性的提升成为一项永无止境的任务。电动汽车当然还会继续发展,我国也将继续推广大规模储电技术在能源体系中的应用。根据我国能源结构现状,电动汽车在我国中长期能源战略与未来可持续发展具有重要地位。相信随着电池技术体系的持续高速发展,未来5~10年,其可靠性与安全性必将显著提升。但是,完全杜绝锂离子电池的燃烧事故,几乎是不可能的。当然,在尊重客观现实的情况下,还有很多提升安全性的工作可以展开。首先是创新的预警技术,比如斯坦福大学近期报道对氢气信号的灵敏捕捉能把预警锂离子电池热失控的时间前推5分钟,这足够电动汽车上的人员逃生的了。另外,电池的“自毒化”技术也比较有效,其机制是当电池发生热失控的前期,能够释放出一些特殊化学物质使得电池内部钝化“瘫痪”,打断了热失控的链条。正视锂离子电池安全性,大力发展创新高效的安全性提升技术,持续提升电池制造一致性。总有一天,这类“爆炸性”新闻,将不再在我们生活中出现,我们可以安心地使用电动车。致谢:感谢清华大学核研院王莉与车辆学院冯旭宁两位老师提供的相关资料及有益讨论。

作者: 张浩 详情
description
可替代贵金属催化剂,天津大学团队将锂电池废料变废为宝

由于高能量和高功率密度,锂离子电池已成为便携式电子产品和电动汽车的主流电源。随着锂离子电池产品的普及,大量废旧电池的出现,也将对生态环境保护造成压力。近日,天津大学教授胡文彬、陈亚楠团队在《中国科学材料》发表研究论文《变废为宝:富缺陷镍掺杂磷酸铁锂用于高效电催化析氧反应》,利用简单浸渍法结合电化学原位转化,可将废旧电池正极材料磷酸铁锂转变成高效的析氧反应电催化剂。废旧电池正极材料中含有的铁元素是重要的金属矿产资源,并作为多种催化剂的主要成分广泛应用于工业催化领域。受此启发,胡文彬、陈亚楠团队尝试通过合理设计将废弃电池中的磷酸铁锂材料转化为高活性的纳米催化剂,通过引入镍元素激活电池废料中的惰性铁元素,获得了高活性镍铁基纳米片催化剂。在催化反应过程中,近球形微米磷酸铁锂颗粒会自发转化为超薄纳米片,这一结构变化产生了大量开放空间结构,从而大大加快了催化反应过程。另一方面,镍和铁之间的协同作用还降低了电催化反应所需要的能量,进而提高了其催化活性。用此方法新获得的镍铁基纳米片催化剂,克服了废弃电池中磷酸铁锂材料颗粒尺寸大、比表面积小、活性差等问题,在催化性能测试中表现出了与其他贵金属催化剂相媲美的优异催化活性和稳定性。据介绍,作为一种绿色且通用的方法, 研究有望实现用低成本的电池废料替代价格昂贵的贵金属催化剂,具有材料损耗低、生产周期短、产率高、可放大等特点,体现出较高的工业价值、成本优势和市场潜力。废旧电池材料的低成本高效回收利用,也将为我国节能减排以及碳中和做出贡献。

作者: 沈阳蓄电池研究所新闻中心 详情
description
川恒股份“牵手”国轩集团 拟建电池用磷酸铁生产线

川恒股份9月7日晚公告称,公司与国轩控股集团有限公司(下称“国轩集团”)签署《战略合作框架协议》及《投资合作协议》,拟在磷系电池材料、氟系电池材料领域开展合作。双方将共同规划建设不低于50万吨/年产能的电池用磷酸铁生产线。川恒股份称,协议的签订对公司当年经营业绩不会造成的影响。未来随着合作深入,预计将对公司经营发展产生积极影响。川恒股份是磷化工领域的领先企业,已经形成矿山开采、磷酸盐产品生产、磷化工技术创新、伴生资源开发利用、磷石膏建筑材料、磷营养技术服务、产品销售为一体的磷化工循环经济产业群,公司产销能力约60万吨/年。国轩集团则是一家总资产超过500亿元的产业集团,下设地产、工业、新能源运营三大事业部。根据《战略合作框架协议》,双方将在五个方面进行战略合作:设立新材料合资公司,推进在磷系锂电池材料(包括但不限于磷酸铁及磷酸铁锂)方面的研发、生产、销售合作,以及电池回收和资源循环利用等方面的合作探索;成立氟系电池材料合资公司,推进在氟系新能源和新型化学材料(包括但不限于六氟磷酸锂、PVDF)等方面的合作;在新能源锂电产业发展过程中,共同探讨新的技术及产业项目合作方向;在产业合作的基础上,积极探讨资本层面的深度融合;积极商讨国轩集团在建电池用磷酸铁产能的商务合作。根据《投资合作协议》,双方拟共同投资组建合资公司,依托川恒股份的资源和技术优势,国轩集团的市场需求基础,共同规划建设不低于50万吨/年产能的电池用磷酸铁生产线,并根据市场情况和国轩集团需求情况,进一步扩大生产规模,丰富产品类型。公告称,双方合作的目的系为满足川恒股份产业发展需求的同时,为国轩集团提供足够数量、供应稳定,并具有一定价格优势的电池用磷酸铁材料。

作者: 时娜 详情
description
全球第二大电池巨头开始生产磷酸铁锂电池

有着更安全性能、更低成本、更长寿命的磷酸铁锂电池,正在风靡全球。全球第二大电池巨头LG新能源也在布局磷酸铁锂电池:据韩媒THE ELEC报道,LG新能源已于去年年底在韩国大田实验室开始研发磷酸铁锂电池技术,最快有望在2022年建设一条中试线。据悉,LG新能源的磷酸铁锂电池的封装形式为软包。并且,LG新能源的母公司LG化学也将参与到磷酸铁锂电池业务中,韩媒预测称,“LG化学可能会与其中国合作伙伴成立一家合资公司,为LG新能源供应生产磷酸铁锂电池所需的原材料。”重新崛起的磷酸铁锂电池早在“十一五”期间,我国全面开展了电动汽车的关键技术研究和大规模产业化技术攻关,磷酸铁锂电池是当时的重点支持项目之一。2008-2012年,国内的磷酸铁锂电池企业数量暴增。不过,在随后的“里程焦虑”中,宁德时代借助能量密度补贴,靠着“三元锂电池”帮助中国动力电池技术突围。在翘翘板的另一端,之前凭借着磷酸铁锂电池做到行业第三、并且市场占有率一度达到25%的沃特玛,宣布破产。磷酸铁锂电池陷入低谷。2020年,随着锂电池的能量密度开发逐渐达到上限,国家补贴也渐渐退潮,在市场化以及磷酸铁铁电池技术不断取得进步的背景下,磷酸铁锂电池重新崛起。2021年5月,国内磷酸铁锂电池的产量方面实现了对三元锂电池的反超:当月,磷酸铁锂电池产量8.8GWh,占总产量63.6%;三元电池产量5.0GWh,占总产量36.2%。这是单月磷酸铁锂电池产量超过三元电池,也是近3年来的首次。2021年7月,磷酸铁锂电池则在装车量方面实现了对三元锂电池的反超:当月,我国磷酸铁锂电池共计装车5.8GWh,同比上升235.5%,环比上升13.4%;与之相对的是,三元电池装车仅5.5GWh,虽然同比上升67.5%,但环比下降8.2%。这是磷酸铁锂电池首次在装车量方面领先于三元电池。全球第二大电池巨头的转变目前,LG新能源是全球第二大动力电池巨头,仅次于宁德时代。LG新能源的母公司是LG化学。公开资料显示,LG化学成立于1947年,自1995年起LG化学开始了对锂离子电池的研究,并于1999年LG化学成为韩国国内首个量产小型锂离子电池的企业。2000年,LG化学开始在密西根研发基地研发动力锂电池,2009年LG化学首次将自主研发生产的锂离子电池应用于商用电动车。2020年12月LG化学将电池事业分拆基准出来另设为新公司(现LG新能源),目前LG新能源正在申请IPO。在动力电池领域,2020年LG新能源曾一度超越宁德时代排名全球第一。直至2020年9月,宁德时代才“抢”回全球第一的王座并持续至年底。而从2020年全年来看,宁德时代动力锂电池出货量市场份额仅高于LG新能源1%,动力锂电池装机量市场份额高于LG新能源2.2%。在2021年7月,韩国市场研究机构SNE公布的2021年5月全球动力电池装机量情况显示,LG新能源反超宁德时代,以同比增加3.7倍至5.7GWh居全球动力电池装机量第一。不过从1-5月的情况看,宁德时代仍然以22.1GWh的装机量位居第一,市场份额达27.1%;LG新能源以0.4GWh之差排名第二,市场份额为26.6%。值得注意的是,因电池存在问题,现代汽车召回的电动汽车中,LG新能源“背锅”并预计损失超过56亿元人民币;在通用两次召回的电动汽车中,也与LG新能源的电池缺陷有关。据了解,通用的召回预计将耗资10亿美元(约65亿元人民币),通用汽车表示正在考虑向电池供应商LG新能源索赔。LG新能源亟需提升动力电池的安全性。刚好,磷酸铁锂电池是一个选择,LG新能源进军磷酸铁锂电池领域水到渠成。这就是LG新能源的转变。车企也在转变新能源汽车的老大,当属特斯拉。现实的情况是,特斯拉正越来越多地使用磷酸铁锂电池。在今年1月和2月,特斯拉CEO马斯克曾多次公开表示,特斯拉将把一些电动汽车的三元锂电池换成磷酸铁锂电池。7月27日,特斯拉召开了2021年第二季度财报电话会议,马斯克在电话会中透露,特斯拉将在电池构成上进行转变,类似使用2/3的磷酸铁电池和1/3的镍电池。8月21日,来自推特的爆料消息称,2021年10月1日起,特斯拉美国加州弗里蒙特工厂生产的Model 3/Y标准续航版,将使用来自中国的磷酸铁锂电池。除了特斯拉,计划2024年推出电动汽车的科技巨头苹果公司,也大张旗鼓地宣称将使用磷酸铁锂电池,并称这是出于安全性的考虑。国内企业对磷酸铁锂电池的接受程度则更高,据统计,即使在新能源乘用车领域,国内磷酸铁锂电池的渗透率已达到30%,全部车型均将搭载刀片电池的比亚迪自不必说,小鹏、蔚来等车企也已经或即将用上磷酸铁锂电池。总结磷酸铁锂电池正在以其更安全、更低成本、更长寿命的优势,得以更大规模的应用。LG新能源已经布局磷酸铁锂电池,未来,不排除松下、三星SDI、SKI等海外电池巨头也布局磷酸铁锂电池的可能!

作者: 沈阳蓄电池研究所新闻中心 详情
description
锰酸锂电池会是下一位“新秀”吗?

继钠离子电池之后,动力电池的下一位“新秀”会是谁?8月9日,星恒电源股份有限公司(以下简称“星恒电源”)与天目湖先进储能技术研究院有限公司(TIES)携手,共同创立“双子星联合实验室”,致力于进行“耐高温、长寿命、高安全的锰酸锂材料和电池技术开发项目”研究。如今,三元锂电池和磷酸铁锂电池在乘用车领域都拥有众多的用户。这两种动力电池成为了市场主流,为何双子星联合实验室还要聚焦锰酸锂电池?《中国汽车报》记者带着疑问,独家专访了TIES院长、中国科学院物理所研究员李泓。优点和缺点都很突出在人们的印象中,电动汽车普遍使用三元锂或磷酸铁锂电池,在市场上很少看到配装锰酸锂电池的车型,造成这种现象的原因是什么?李泓告诉记者,大家一直比较关注电动汽车的续驶里程,动力电池的能量密度越高,单次充电续驶里程越长。三元锂电池的能量密度可达300Wh/kg,因此在乘用车上具有较为明显的优势地位。不过,由于需要使用钴、镍等金属材料,导致它的成本高于磷酸铁锂电池。随着CTP、刀片电池技术的进步以及整车对电池包体积的优化,电动汽车配装磷酸铁锂电池也能达到500~600公里的续驶里程,基本上能消除人们的里程焦虑。再加上其成本明显低于三元锂电池,而且安全性较好,近一段时间以来磷酸铁锂电池的产量和装机量不断扩大。锰酸锂电池的能量密度不及上述两种动力电池,循环寿命、高温储存特性也存在短板。不过,它也有着突出的优点。“锰酸锂电池的成本比磷酸铁锂电池低,快充性能表现良好,低温性能也非常突出。在锂电池的市场竞争中,大规模应用、取得优势地位的关键还在于成本、安全等几项因素。”李泓认为。李泓告诉记者,锰酸锂材料比磷酸铁锂的成本低20%~30%。另外,锰酸锂电池的电压较高,达到3.9V,磷酸铁锂电池为3.4V,三元锂电池为3.7V。电压高意味着电池PACK可以使用较少的电芯,锰酸锂电池包既可以少装电芯降低成本,又表现出体积优势,PACK的成本明显低于三元锂或磷酸铁锂电池。锰酸锂电池的安全性则介于三元锂电池与磷酸铁锂电池之间。李泓指出,磷酸铁锂电池的安全问题主要来自负极,三元锂电池的安全问题来自正极的因素更加突出。锰酸锂是尖晶石结构,比层状氧化物的稳定性好,磷酸铁锂中磷酸根中的氧更难析出,稳定性强于锰酸锂电池。锰酸锂电池有改良空间三元锂电池能量密度的极限在哪里?目前,业界还没有给出准确的答案。不过,人们对于磷酸铁锂的极限值基本已形成共识,约为170mAh/g,目前其潜力挖掘已达到165mAh/g。锰酸锂的理论克容量约为144mAh/g,现有锰酸锂电池的克容量为114~117mAh/g,其能量密度还有较大提升空间。锰酸锂电池的高温稳定性不如磷酸铁锂电池,但也有改进办法。据李泓介绍,他们在做固态电池的时候,把高镍三元材料表面经过固态电解质处理,可以防止氧析出以及热失控,降低表面氧化能力。对锰酸锂材料进行改性,也有机会提高电池高温稳定性;另外,在负极侧进行固态化处理,也可防止析锂及带来的副反应。改进不仅于此,隔膜技术提高也为锰酸锂电池的进一步发展带来了希望——中间的隔膜经过涂层后,热收缩温度能达到较高的水平,使安全性显著提升。据悉,涂层的固态化可以改善正负极与隔膜的界面接触,有利于防止正极锰溶解后向负极扩散,发生热失控的几率将进一步降低,或显著提高热失控的温度。李泓说:“锰酸锂电池改性的第一步是实现准固态化,下一步要尝试全固态。这些都实现后,锰酸锂电池的安全性、耐高温性能、循环性能将显著提升。”他还告诉记者,在正极材料不变的情况下,从人造石墨负极到纳米硅碳负极再到锂碳复合负极,锰酸锂电池电芯的能量密度能提升至240~250Wh/kg以上。未来,随着电解质耐氧化电位的提高及固态电解质的引入,其正极材料还有可能进一步升级为放电电压在4.8V,可逆容量在135mAh/g的锂镍锰氧(LiNi0.25Mn1.5O4)。这类材料与锰酸锂晶体结构一致,含镍量较低,直接与石墨匹配后的能量密度可以提升至240Wh/kg,未来与纳米硅碳等复合,有望超过280Wh/kg。另外,还有一类高锰基正极材料,其材料可逆容量高达300mAh/g以上,只是目前在循环过程中存在电压衰减明显、倍率性能相对较差、循环性不到1000次以上、高温胀气等问题,需要进一步优化。随着技术瓶颈不断突破,这些新材料一旦开发成功,将显著推动锰基正极材料的应用,从资源可持续性、降低成本、提高综合技术经济性方面考虑,有望占据更大的市场份额。或与三元材料“结合”出更大前景国家电动乘用车技术创新联盟技术委员会原主任、国家新能源汽车创新工程专家组原组长王秉刚曾告诉记者,日产聆风几乎没有过重大起火事故。记者查询资料后发现,该款车使用锰酸锂电池,与大多数电动汽车有显著区别。李泓告诉记者,日产聆风并不单纯使用锰酸锂电池,而是锰酸锂与三元锂电池混搭使用。两种正极材料混用,不仅在汽车上存在,在其他使用场景,如消费电子产品、无人机上也常见。“锰酸锂电池正极中掺杂三元材料,可以通过离子交换反应,抑制锰溶解,提升锰酸锂正极材料的高温和循环性能,同时提升能量密度。”他解释说。据悉,由于锰基电池有自己独特的优势,不仅国内多家企业涉足,AESC、LG化学、东芝、日立、LEJ等日韩企业也生产锰酸锂电池或在三元锂电池里掺杂锰酸锂材料。在今年3月举行的大众汽车“电池日”活动上,该公司就明确表示,将大力研发高锰电池。记者了解到,双子星联合实验室的创建方之一星恒电源,曾由中科院物理所孵化,一直致力于锰酸锂电池的开发,已成为国内最大的锰酸锂电池研发与生产企业。星恒电源与TIES联合成立实验室,就是希望通过逐步导入纳米固态电解质、纳米硅碳负极、固态电解质复合隔膜等新技术,开发更耐高温、长寿命、本质安全的锰酸锂材料和电池技术,逐渐实现锰酸锂电池从液态到准固态,到未来争取实现全固态,从而显著提升锰酸锂电池的能量密度、循环寿命、安全性,同时发挥其低成本、高倍率、低温性能好的优点。“这项技术如果研发成功,在电动轻型车和电动汽车动力电池领域将具有强大的市场竞争力。”李泓说。“随着新能源汽车补贴退坡直至取消,减少资源依赖,减少锂电池中钴和镍的含量甚至完全不使用钴和镍,从而减低动力电池成本,增强市场竞争力成为企业考虑的头等大事。锰酸锂电池以其独特的优势受到人们的重视,与改性后的三元材料结合,既改善电池包性能,又能控制成本,预计未来市场份额可达25%以上。”李泓认为。图片(来源:中国汽车报网/作者:万仁美)

作者: 沈阳蓄电池研究所新闻中心 详情
description
宁德时代2023年实现批量生产,钠离子电池:姗姗来迟、正待起跑

7月29日,宁德时代举办了钠离子电池线上发布会。作为动力电池行业的引领者,宁德时代的一举一动都格外引人关注。此次宁德时代高调发布钠离子电池,随之而来的评价不一。有人表示,它将引领新的“风口”,促进多元化技术路线发展;有人认为,这里面或也涉及对资本市场的考量。计划2023年批量生产事实上,锂离子电池并非电池领域的新技术,早在上世纪80年代,其与锂离子电池就同时进入了科研人员的视野。在多重因素作用之下,锂离子电池得以大规模发展,并从消费电子逐步走向动力电池领域。“当时,钠离子电池的优势不突出,所受关注也并不高。”一位不愿透露姓名的业内人士对《中国汽车报》记者表示,随着电池技术的发展,钠离子电池近10年来取得了较大进步。比如,2018年,中科海钠就推出了首款钠离子电池低速电动车。据了解,宁德时代此次推出的钠离子电池优势比较明显。首先是取得了能量密度的重要突破。一般认为,钠离子电池能量密度为90~150Wh/kg,而宁德时代产品的电芯单体能量密度高达160Wh/kg,并计划将下一代钠离子电池的能量密度提高到200Wh/kg。目前,国内两家龙头企业中科海钠、钠创新能源的钠离子电池能量密度分别为135Wh/kg和120Wh/kg,英国Faradion公司产品的能量密度为140Wh/kg。第二是改善快充性能。宁德时代钠离子电池常温下充电15分钟,电量可达80%以上。第三是低温性能优异。在零下20℃的低温环境中,宁德时代钠离子电池也能拥有90%以上的放电保持率,系统集成效率可达80%以上。当前,钠离子电池仍处于产业化初期,动力电池企业纷纷布局相关技术与产能。宁德时代方面表示,计划2023年基本形成钠离子电池产业链。华阳股份今年4月发布公告称,全资子公司新阳能源拟投资新建“钠离子电池正极材料千吨级生产项目”、“钠离子电池负极材料千吨级生产项目”两个项目,总投资合计1.4亿元。英国FARADION公司、日本松下、丰田等国外企业也都在进行产业化探索。目前,全球开展钠离子电池业务的公司达20多家。广发证券的相关研究数据显示,2025年,国内钠离子电池潜在应用场景需求量为123GWh,以磷酸铁锂电池价格计量,对应537亿元左右的市场空间。为何此时“杀出重围”?在采访中,业内人士纷纷表示,在锂资源紧张与原材料涨价的大背景下,宁德时代推出钠离子电池恰逢其时。“目前,整个动力电池产业链都面临依赖锂资源进口的挑战,如果在钠离子电池上有所突破,将有效降低对锂资源进口的依存度。宁德时代在动力电池领域具有较高的代表性,其发布钠离子电池会提高整个行业对此的关注度,应该说起到了一个较好的带头作用。”中国汽车动力电池创新联盟副秘书长马小利在接受记者采访时表示,宁德时代对动力电池研发体系的布局很全面,一直在进行技术创新,此次推出新品说明在某些方面实现了对钠离子电池的技术突破。资料显示,我国80%以上的锂原料依赖进口,而且其不断攀升的价格也让行业承压明显。相比之下,钠资源储量非常丰富,而且提炼简单。据中科海钠测算,受益于更低的材料成本,钠离子电池较锂离子电池成本通常低30%~40%。“如果钠离子电池的产量达到一定规模,其成本有望降到磷酸铁锂电池的水平甚至更低。”马小利说。新能源和智能网联汽车独立研究员曹广平认为,宁德时代推出钠离子电池的大背景在于:“双碳”趋势需求下,全球锂资源有限,钠资源是较大补充。新能源汽车、电力储能、5G基站备用电源以及两轮电动车的快速发展,拉动锂电池需求飙升,造成了原材料(预期)涨价等市场供需不平衡的情况。除此之外,北方工业大学汽车产业创新研究中心研究员、汽车分析师张翔还补充道,作为上市公司,宁德时代推出钠离子电池或有资本市场方面的考量。此前,宁德时代将发布钠离子电池的消息一经发布,直接拉动其股价上涨。7月29日,宁德时代股票上涨6.05%,7月底市值达1.28万亿元,环比上升2.99%。同时,钠离子电池概念股也一路跟涨。7月29日,盛弘股份、湘潭电化、科瑞技术涨停,海目星、机器人等纷纷跟涨;7月30日早盘,钠离子电池概念股再现大涨,天能股份以20%的涨幅涨停。将成为动力电池补充路线在马小利看来,钠离子电池可以作为当前动力电池技术路线的补充,不过要想大规模商业化仍需跨过诸多挑战。比如,钠离子电池本身自重较重,作为动力电池还要在能量密度上实现突破。此外,钠离子电池的正负极、电解液等材料供应也尚未形成规模。“钠离子电池产业的发展需要下游市场的拉动,同时也应给予宁德时代等勇于实现技术突破的企业鼓励和认可。”她说。张翔告诉记者,钠离子电池最大的“硬伤”还是能量密度较低,达不到目前新能源汽车补贴的要求,因此在市场推广上具有一定的难度。另外,钠离子电池尚未实现商业化,许多数据仍来自实验室,技术待进一步发展和成熟。据介绍,宁德时代在电池系统集成方面开发了“AB电池解决方案”,即锂离子电池与钠离子电池混合共用,并进行不同电池体系的均衡控制,以此弥补钠离子电池在现阶段的能量密度短板,同时发挥出电池系统高功率、低温性能的优势。有业内人士指出,目前,钠离子电池非常适合的应用场景包括两轮车和储能领域。相对而言,铅酸电池寿命短、污染大,因此钠离子电池有望逐步实现对其的替代。中信证券的研报显示,在能源变革的大时代下,钠离子电池在资源丰富度、成本方面优势明显,未来几年随着产业投入的加大,技术走向成熟、产业链逐步完善,有望在储能等领域实现商业化应用,在一定程度上形成对锂离子电池、铅酸电池等成熟储能技术的补充。“只要有市场需求的电池,就有存在与发展的意义。”马小利强调。曹广平也表示,每一种电池都有自己的技术特点,而每一个应用领域又对电池提出了不同的技术要求。总体来看,未来行业将出现多种电池技术路线并行发展的局面。对于钠离子电池来说,其商业化前景还要综合考量技术突破、工艺难题攻克及综合性价比等方面的进展。政策层面也明确了未来钠离子电池在储能领域的发展方向。7月15日,国家发展改革委、国家能源局发布了《关于加快推动新型储能发展的指导意见》,提出加快飞轮储能、钠离子电池等技术开展规模化试验示范,以需求为导向,探索开展储氢、储热及其他创新储能技术的研究和示范应用。行业人士认为,钠离子电池未来有望加快应用于电网侧、用电侧和发电侧储能。

作者: 赵玲玲 详情
description
钠离子电池时代要来了?

在智能物联网时代,大量的智能设备需要电池,从智能手机、智能手表、笔记本电脑到新能源汽车等,电池的续航时间、充电快慢、环境适应性等成为智能设备竞争的重要维度,目前在消费电子市场和新能源汽车市场锂离子电池处于“一统江湖”的主流地位。现在这样的格局有可能要发生改变了。7月29日,宁德时代创始人曾毓群在网上正式发布钠离子电池,并表示宁德时代钠离子电池具备低温性能、快充性能以及更强的环境适应性,未来将与锂电池共存发展。钠离子电池的时代要来了吗?钠离子电池有哪些特性?又将带给智能设备世界怎样的电力“动力”?每一种新技术能够得以生存并快速发展,都是因为拥有了比现存市场技术更优的差异化特点,这个定律放之四海。从目前来看,钠离子电池与锂离子电池的差异化在于低温性能和快充方面。按照宁德时代研究院副院长黄起森介绍,目前宁德时代开发的第一代钠离子电池,电芯单体能量密度为160Wh/kg,在当前处于全球最高水平;在常温环境下下充电15分钟,电量可达80%;即便是在-20°C的低温环境下,放电保持率仍然高达90%以上;同时,在系统集成效率上,可以达到80%以上;具有优异的热稳定性,并且超越了国家动力电池强标的安全要求。“总体来看,第一代钠离子电池的能量密度略低于目前的磷酸铁锂电池,但是在低温性能和快充方面具有明显的优势。特别是在高寒地区,高功率应用场景。” 黄起森说。其实,钠的化学性质,电池工作原理都和锂非常相似,在化学元素周期表中,钠元素与锂元素为同一主族,物理化学性质极为相似。甚至钠离子电池和锂离子电池连“命运改变人”都是同一“群族”,2019年诺贝尔化学奖颁给了美国的迈克尔·斯坦利·惠廷汉姆、约翰·班尼斯特·古迪纳夫以及日本吉野彰三位化学家,奖励他们“在发明锂电池过程中做出的贡献”。事实上,钠离子电池也是惠廷汉姆研发的,只是锂电池各方面优势突出并且发展神速,因此钠离子电池在商业上没有大规模普及。锂在电势、原子量、离子半径等基本性质上,相对而言都是比钠更好的材料。锂的原子量更低、离子半径更小,锂的理论质量比容量是钠的3.3倍,锂的理论体积比容量是钠的1.8倍;且锂的电位更高,比钠高出12%,锂材料的电池更具竞争优势。因此锂离子电池也更早大规模商业化。最近几年,钠离子电池之所以被高度关注,有几个关键原因,一是从总量上看,因为钠储藏量要比锂丰富,具有更好的发展可持续性。目前地壳中钠储量达2.74%,而锂储量仅为0.0065%,是锂资源的440倍,而且锂离子电池回收经济价值低。钠离子电池活性材料中不含昂贵的钴,使其具有更强的可持续性。二是从地区分布上,各个区域的锂储藏也不均匀。我国仅拥有世界锂资源储量的5.93%,锂矿大多位于青藏高原地区,开采难度大,致使我国锂矿对外依存度高。钠离子电池对我国减少锂资源对外依存度具有重要战略意义。三是钠资源提炼相当简单,钠离子电池大规模商用后,具有较大的成本优势。事实上,钠离子电池应用前景广阔,在电动车市场上,钠离子电池具有低成本、低能量密度、安全性强等特性,是铅酸电池更好的替代品。而且随着可再生能源大批量上网,电网侧与发电侧对储能的需求愈发强烈,为钠离子电池市场化应用提供土壤。目前来看,钠离子电池产业化商处于初级阶段,面临的主要挑战是成本优势不明显、工艺和产业链不成熟、核心电极材料和电解液规模化供应渠道缺失、缺少电池相关标准化等。不过,分析机构认为,钠离子电池具备产业化快速提升的潜力。钠离子电池与锂离子电池生产线、制作工序相似,随着锂电和上游材料企业入局,产业化进程会大幅提速。目前中国大约有20多家企业从事钠离子电池研发及上下游配套包括宁德时代、中科海纳、容百科技、深圳比克电池、欣旺达、华阳股份、沧州明珠、恩捷股份、中材科技、璞泰来等。相对于其他企业,据宁德时代透露其已解决了材料在循环过程中容量快速衰减这一世界性的难题,而宁德时代之所以能够解决这个难题,得益于模拟计算和设计仿真。据介绍宁德时代构建了高通量材料集成计算平台,在原子级别上对材料进行了模拟计算和设计仿真,对材料表面进行重新设计,解决了材料在循环过程中容量快速衰减的问题,使新材料具备了产业化的条件。按照黄起森介绍,在正极材料方面,宁德时代采用了克容量较高的普鲁士白材料,创新性地对材料体相结构进行电荷重排,解决了普鲁士白在循环过程中容量快速衰减这一核心难题;在负极材料方面,宁德时代开发了具有独特孔隙结构的硬碳材料,其具有克容量高、易脱嵌、优循环的特性;在电解液方面,宁德时代还开发了适配钠离子电池正极负极材料的新型独特电解液体系;在制造工艺方面,钠离子电池可以与目前的锂离子电池制造工艺和设备相兼容。宁德时代在发布会上透露,目前公司已经开始进行钠离子电池产业化布局,计划是到2023年要能形成基本产业链。分析机构的预测是在未来3~5年,钠离子电池产业链会基本形成,钠离子电池相关工艺、相应的电池管理系统、相关技术体系也会趋于成熟。

作者: 李佳师 详情
description
钠电池是锂电池的良好补充,产业化开始加快

钠电池工作原理与锂电池类似,生产设备也基本兼容,材料体系有一定变化,钠电池凭借能量密度和循环性能的优势,有望在储能和两轮车等市场获得商业应用。在车用动力电池领域,钠电池优秀的低温、快充、安全性是对锂电池的补充,但能量密度和循环性能差距较大,不过宁德时代提出了动力电池中采用锂电池和钠电池混配辅以BMS升级的方案,有望推动钠离子电池在交通领域应用。钠离电池作为一种新的路线,其核心的原材料供应更大宗和普遍,有助于摆脱电池上游战略资源瓶颈,能更好的满足未来TWh时代电池技术多样化需求,是锂电池良好的补充,预计其规模的应用可能在2023年左右或以后。摘要钠电池简介。钠电池工作原理与锂电池类似,同时生产设备也基本兼容。不过材料体系有较大变化,正极一般采用普鲁士白和层状氧化物,负极选用硬碳,集流体均采用铝箔,隔膜和电解液没有大的变化。性能方面,钠电池在低温性能、安全性、成本(大规模量产后)方面具备优势,能量密度和循环性能均介于锂电池和铅酸电池之间。钠电池作为锂电池的补充,主要应用市场在储能等领域。钠电池的能量密度、循环寿命优于铅酸电池,同时具备较强的安全性和较低的成本。根据产业反馈,目前钠电池主要开始应用在储能和两轮车领域替代铅酸电池。在动力领域,钠电池优秀的低温和快充性能是锂电池的良好补充,但能量密度有一定差距,不过宁德时代提出在动力电池系统中将锂电池和钠电池混配并升级BMS的方案,可能会推动钠电池在车载市场应用。钠电池对保障供应链安全有战略意义。我国仅拥有世界锂资源储量的5.93%,且开发有一定难度,我国锂矿主要依赖进口,镍资源也主要在海外,资源供应可能是锂电池产业进一步壮大后将面临的潜在约束之一。而钠资源储量丰富、分布广泛,且更容易获取,钠电池的研发储备和产业化对保障我国电池产业战略资源供给安全具有重要意义。在未来TWh的电池生态中,钠电池应该会有一席之地。产业化可能在未来几年。国内具有比较成熟的钠电池生产研发能力的企业主要是宁德时代、中科海纳、钠创新能源。宁德时代的第一代产品单体能量密度达160wh/kg,系统集成效率达80%,零下20度容量保持率90%,在常温下充电15分钟电量达到80%,综合性能优异。目前国内钠电池产业化刚起步,供应链还没形成,钠电池材料主要依靠电池公司自身研发。随着产品迭代和提升,电池产业应用可能进一步加快,根据宁德时代估计,钠电池规模应用可能在2023年左右或以后。投资建议:继续推荐宁德时代,其余关注华阳股份(煤炭)、浙江医药(化工)、鼎盛新材(招商有色)。风险提示:钠电池技术升级和推广低于预期、成本下降幅度低于预期。1、钠离子电池简介1.1钠离子电池工作原理钠离子工作原理与锂离子电池类似。钠离子电池作为充电电池的一种,主要由正、负极、电解质、隔膜、集流体等组成。其工作原理是利用钠离子在正负极之间的可逆脱嵌从而实现充、放电的,与锂电池类似。钠离子电池的分类。钠离子电池可分为钠硫电池、水系钠离子电池、有机钠离子电池、固态钠离子电池。钠硫电池主要以金属钠作为负极、非金属硫作为正极、β-A12O3陶瓷管同时充当电解质和隔膜,是目前唯一同时具备大容量和高能量密度的储能电池。截止2020年,全球从事钠离子电池工程化的公司超过20家,包括松下、丰田等。2017年,我国首家钠离子电池公司中科海钠成立,依托中国科学院物理研究所的技术,目前在技术开发和产品生产上都初具规模。1.2 材料体系与锂电池有所不同相比锂电池,钠离子电池材料使用有差异。钠离子电池中,正极材料:使用钠离子的活性材料,常见的包括普鲁士蓝、铜铁锰或镍铁锰层状氧化物,需具有良好的电化学性、化学稳定性、热稳定性、安全性,以此保证较高的理论比容量和电池循环寿命;负极材料:由于钠的半径较大,并不能在石墨层中可逆的脱嵌,因此一般选择具备嵌入钠离子的能力强、体积变形小、扩散通道好、化学稳定性好等特点的硬碳材料。电解质和隔膜:可以沿用锂电池体系中的材料,但电解液中的六氟磷酸锂需要换成六氟磷酸钠。集流体:由于锂电池主要以石墨作为负极,铝箔作为负极集流体在低电位下易与锂形成合金,因此需使用铜集流体,而钠离子正负极均可使用价格较低铝箔作为集流体。1.3 钠资源储量丰富,成本有望继续下降钠资源储量丰富。钠资源储量丰富,地壳丰度可达2.74%,价格低廉且提炼简单。而锂储量仅0.0065%,主要分布于澳大利亚、南美地区。钠离子电池对保障我国资源供给具有重要战略意义。我国仅拥有世界锂资源储量的5.93%,且开发有一定难度,我国锂矿主要依赖进口,镍资源也主要在海外,资源供应可能是锂电池产业进一步壮大后将面临的潜在约束之一。而钠资源储量丰富、分布广泛,且更容易获取,钠电池的研发储备和产业化对保障我国电池产业战略资源供给安全具有重要意义。在未来TWh的电池生态中,钠电池应该会有一席之地。钠离子电池成本有望继续下降。钠电池外形封装(圆柱、软包、方形)与锂电池相同,同时锂电池的生产设备大多可以兼容钠离子电池,原始设备成本支出与锂电池相当。材料中,除隔膜外,钠离子电池的正、负极、电解液、集流体的价格较锂电池材料低。不过,由于钠离子电池制备工艺不够成熟、生产设备仍有待改善,生产效率较低且产品一致性及良品率均低,目前的生产成本明显高于锂离子电池。但未来当技术成熟实现规模化效应后,其降本空间更大。2、钠电池作为锂电池的补充,主要应用市场在储能等领域2.1 钠离子电池产品性能分析有望逐步替代铅酸电池,是锂电池的良好补充。钠离子电池的能量密度、循环寿命优于铅酸电池,但低于锂离子电池。对比铅酸电池,同等容量的下,钠离子电池的体积小、重量轻,且能量密度超过铅酸电池的2倍以上。同时,相比于锂离子电池,钠离子电池的内阻比锂离子电池高,发生短路时发热量少温度较低,且在放电过程中可可放电至0V,因此钠离子电池较锂离子电池的安全性能更加优异。未来首先可能取代铅酸电池并逐步实现低速电动车、储能等领域的无铅化发展。在钠离子电池储能与动力领域,国内企业中科海钠处于产品研发生产的领先地位。目前研发的产品覆盖了电动自行车、低速电动车、规模储能等领域,均可在零下20℃至55℃工作。中科海钠电池使用的技术路线是铜铁锰,生产的钠离子电池循环寿命约为4500次,与磷酸铁锂相当,优于锰酸锂和三元材料;能量密度高于145Wh/kg,与锰酸锂接近。钠创新能源致力于做镍铁锰正极材料(NaNi1/3Fe1/3Mn1/3Q2),即三元层状氧化物正极-硬碳负极体系的钠离子软包电芯,循环寿命约为5000次。2.2 目前的商业化应用主要在储能和两轮车储能是钠离子电池主要的应用场景。2021年6月,由山西新阳清洁新能源与中科海钠主导的1MWh钠离子储能系统在山西落地。其利用阳泉储量丰富、成本低廉的无烟煤作为前驱体,采用中科院全球首创的碳基负极材料生产技术和正极廉价原料加工工艺生产,具有成本最低、安全性能高、低温性能良好、循环寿命长等特点,可广泛应用于低速电动车、家庭储能、5G通讯基站等大规模储能装置。钠离子电池打入两轮电动车市场。2021年7月7日,国内第二大电动两轮车爱玛科技在发布会上表示将使用钠离子电池搭载在未来旗下的电动两轮车上,其钠离子电池由钠创新能源提供。2019年,钠创新能源完成了吨级材料产线。目前1000-3000吨级产线基本建成试运营,3000吨可以对应百万辆爱玛电动车。储能和两轮车市场适合钠电池,车用动力市场还需观察。钠电池规模化生产后成本低,同时安全性好,能量密度、循环寿命尚可,在储能和两轮车市场更有优势。在动力领域,钠电池优秀的低温和快充性能是锂电池的良好补充,但能量密度有一定差距,不过宁德时代提出在动力电池系统中将锂电池和钠电池混配并升级BMS的方案,可能会推动钠电池在车载市场应用。3、国内企业已经开始布局,大规模产业化可能在2023年以后宁德时代电池产业优势雄厚,已经推出钠电池产品。公司已经发布第一代钠电池产品,单体能量密度达160wh/kg,系统集成效率达80%,同时零下20度容量保持率90%,在常温下充电15分钟电量达到80%,综合性能优秀。公司材料体系均为自身研发,采用普鲁士白(铁锰基氧化物,普鲁士蓝的升级版)和层状氧化物作为正极,硬碳作为负极(克容量350mah/g)。未来下一代钠电池能量密度目标突破200wh/kg。中科海钠依托中科院物理所,钠离子电池技术领先。中科海钠成立于2017年,核心技术来源于中国科学院物理研究所清洁能源实验室,是国内首家专注于钠离子电池研发与生产的高新技术企业,公司拥有钠离子电池核心专利15篇,在钠离子电池全生产链各个环节已掌握具有完全自主研发的核心技术,目前已成功开发出的钠离子电池能量密度达到145Wh/kg。2021年4月,华阳股份全资子公司新阳能源与中科海钠合作,拟建设2000吨钠离子电池正极材料和2000吨钠离子电池负极材料项目。钠创新能源团队源于上海交大,产品覆盖广泛。钠创新能源成立于2018年,其中,浙江医药参股40%,但不参与实际经营。公司核心团队源自上海交大马紫峰教授钠离子电池技术研发团队,首席科学家马紫峰教授发表钠离子电池相关文献16篇,公司拥有30余项发明专利,涵盖钠离子电池正极材料、电解液、电池的设计制造以及系统集成与管理等。公司核心产品包括铁基三元材料前驱体、铁酸钠基三元正极材料、钠电电解液、电芯及系统应用产品等。2021年7月7日,爱玛科技在经销商大会上发布钠离子电池,电池由钠创新能源负责,未来将搭载在自己的电动两轮车上。大规模产业化可能在2023年以后。目前国内钠电池还没有形成大规模的产业链,电池企业处于前期的电化学体系积累阶段,材料主要依靠自身研发。未来随着产品成熟度持续提升,国内钠电池产业链可能逐步形成,根据宁德时代预计,可能在2023年以后。投资建议钠电池工作原理与锂电池类似,生产设备也基本兼容,材料体系有一定变化,钠电池凭借能量密度和循环性能的优势,有望在储能和两轮车等市场获得商业应用。在车用动力电池领域,钠电池优秀的低温、快充、安全性是对锂电池的补充,但能量密度和循环性能差距较大,不过宁德时代提出了动力电池中采用锂电池和钠电池混配辅以BMS升级的方案,有望推动钠离子电池在交通领域应用。钠离电池作为一种新的路线,其核心的原材料供应更大宗和普遍,有助于摆脱电池上游战略资源瓶颈,能更好的满足未来TWh时代电池技术多样化需求,是锂电池良好的补充,预计其规模的应用可能在2023年以后。推荐与关注:宁德时代:7月29日发布第一代钠离子电池产品,已经完成前期的电化学体系积累。华阳股份(煤炭):间接持有中科海钠1.66%的股权。浙江医药(化工):持有钠创新能源40%股权。鼎盛新材(有色):钠电池中铜箔改用铝箔。风险提示1)钠电池技术升级和推广低于预期。钠电池的能量密度、循环性能还有待提升,如果技术无法持续升级,可能导致推广不及预期,下游应用空间比较有限。2)成本下降幅度低于预期。钠离子电池理论成本会更低,但目前还没有进入大规模量产阶段,生产工艺和设备还不够成熟,因而成本还比较高。若成本下降幅度低于预期,可能导致大规模商业化应用低于预期。

作者: 沈阳蓄电池研究所新闻中心 详情
description
钠离子电池能取代锂离子电池吗?

钠离子电池是锂电池的潜在替代品,但锂离子电池的阳极却不能为钠离子电池提供同样的性能。对于钠离子电池来说,缺乏结晶结构的无定形碳被认为是一种有用的阳极,因为它有缺陷和空隙,可以用来储存钠离子。氮/磷掺杂的碳也具有不错的电性能。在《Applied Physics Reviews》中,来自浙江大学、宁波大学和东莞理工大学的研究人员描述了他们如何应用原子尺度的基本物理概念来构建钠离子电池的高性能阳极。掺杂的非晶碳,特别是富电子元素掺杂的非晶碳,是一个很好的储钠阳极,但对于钠存储的工作原理或掺杂碳的掺杂效果,还没有获得一致的解释。为了寻求答案,研究人员使用能级轨道的概念来解释吡咯氮和一个磷氧键的亲和力、它们的原子相互作用、电子分布和电子云配置。为了更近距离地了解独特的存储行为,他们应用了第一原理计算,这是一种利用基本物理量来计算物理性质的方法。它基于电子密度函数,这是量子力学的一个概念,可以揭示晶体的分子结构。当他们分析了嵌入在改性碳材料内的钠离子的电子分布、体系化学参数和吸附能量时,他们发现吡咯氮和磷氧键显示出真正的钠存储潜力。研究人员设计了一种水热处理方法来构建磷-氧结构的前体,然后在碳阳极上掺入双电子丰富的元素,显示出增强电池的循环寿命和容量的电化学性能。他们的阳极实现了5000次循环寿命,容量增强到220毫安时/克,并减少了容量损失(0.003%/循环)。论文标题为《Sodium storage behavior of electron-rich element-doped amorphous carbon》。

作者: 沈阳蓄电池研究所新闻中心 详情
description
胡勇胜团队:钠离子电池标准制定的必要性

摘 要 :钠离子电池具有资源丰富、成本低廉、能量转换效率高、循环寿命长、维护费用低、安全性好等诸多独特的优势,能够满足新能源电池领域高性价比和高安全性等应用的要求。然而钠离子电池作为一种全新的化学电源体系,在当前产业化和推向市场之际,国内外无任何可供使用的产品标准或规范,这将会严重制约钠离子电池技术和产业的发展,迫切需要制定相关的国家和行业标准,实现钠离子电池产品的检验规范化和质量标准化,规范市场秩序和推动技术进步。本文首先介绍了全球范围内锂资源和钠资源的形势;其次,对钠离子电池所具有的特性和优势、国内外的技术及产业化发展现状、存在的问题和未来的发展趋势进行了详细说明,并分析了目前全球范围内钠离子电池标准的现状及可供其参考的其他电池体系已有的标准或规范,指出了钠离子电池标准制定的必要性。最后概括了锂离子电池标准化工作的发展历程及借鉴意义,提出了在制定钠离子电池的标准时可结合其产品特点并借鉴锂离子电池标准化建设工作的具体建议。关键词: 钠离子电池;标准;产业化锂离子电池已经被证明是目前市场上最有影响力的电池产品,被广泛应用于便携式电子产品、电动工具和电动汽车等。近年来,随着这些行业的飞速发展,国内外锂离子电池的生产制造规模达到了空前高度,并且各大锂离子电池生产商还在不断扩大其产能,这必然导致锂资源的大量消耗和价格上涨,2015年碳酸锂价格就一度达到了14~16万元/吨。但是锂并不是一种丰富的资源,在地壳中的丰度仅约为17 ppm(1 ppm=10-6,余同)(图1),且分布极不均匀。据美国地质调查局(USGS)2019年最新报告显示,全球锂资源储量约6200万吨,其中南美洲国家阿根廷占比23.87%、玻利维亚占比14.52%、智利占比13.71%,分别位居全球锂资源储量前三,被称为南美洲地区的“锂三角”(图2)。这种锂资源分布的不均匀性势必又将导致全球范围内新一轮的“资源战争”,而且按照锂离子电池现在的发展速度,若不考虑回收,其应用将在几十年后受到锂资源的严重限制,如果再将锂离子电池应用到大规模储能市场,势必将加速这一过程。图1   地壳中部分化学元素的丰度图片图2   世界主要锂资源国家的探明储量和产量占比众所周知,元素周期表中钠与锂是处于同一主族且具有相似物理化学性质的金属元素,地球上钠资源储量非常丰富,元素含量约为23000 ppm,丰度位于第6位(图1),且钠分布于全球各地,可完全不受资源和地域的限制,所以在资源方面,钠离子电池比锂离子电池具有更大的优势。此外,钠离子与锂离子在电池体系中具有类似的脱/嵌机制(图3),对钠离子电池的研究与开发可缓解由锂资源短缺引发的新能源电池发展受限的问题。虽然在能量密度等方面与目前的锂离子电池相比还存在差距,然而在低速电动车和储能应用中成本和寿命是比能量密度更重要的指标,由此可以判断,钠离子电池将在低速电动车、大规模电力储能、5G通信基站、数据中心等应用领域拥有比锂离子电池更大的市场竞争优势。图3   钠离子电池的工作原理1 钠离子电池特性尽管钠是周期表中仅次于锂的碱金属元素,但两者在物理化学性质上的差异(表1)势必会造成相应电极材料在电化学性能上的差异。较重的钠离子质量和较大的钠离子半径致使钠离子电池的重量和体积能量密度无法完全与锂离子电池相媲美,而钠离子较大的离子半径也会引起电极材料在离子输运、体相结构演变和界面性质等方面的差异。因此,为了发挥钠离子电池自身的特性和优势,必须探寻不同于锂离子电池的新的材料体系。表1   锂与钠的物理化学性质对比注:1 Å=0.1 nm。然而,钠与锂物理化学性质上的差异所带来的影响不一定都是负面的,在某些方面具体其独特的优势:①由于钠离子与过渡金属元素离子的半径差异较大,在高温下更容易与过渡金属分离形成层状结构,使其层状氧化物的堆积方式具有多样化。含锂层状氧化物多为O型结构,而含钠层状氧化物具有丰富的O型和P型材料种类;②很多在含锂层状氧化物正极中没有电化学活性的过渡金属元素在含钠层状氧化物中具有活性。目前仅发现Mn、Co、Ni三个元素组成的含锂层状氧化物可以可逆充放电,而具有活性的含钠层状氧化物种类相对较多,Ti、V、Cr、Mn、Fe、Co、Ni、Cu等元素均具有活性且表现出多种性质;③钠离子在电极材料中的扩散速率并非一定低于锂离子,扩散速率的快慢与电极材料的晶体结构密切相关;④在充放电过程中,相同构型的电极材料由于传输离子的差异会产生不同的相变,特别是钠离子与空位的有序无序分布将产生重要影响;⑤较大的钠离子半径不一定会导致电极材料的体积发生巨大形变;⑥在极性溶剂中钠离子具有更低的溶剂化能,从而在电解液中具有更快的动力学,具有更高的电导率。另一方面钠离子的Stokes半径比锂离子的小,相同浓度的电解液具有比锂盐电解液更高的离子电导率,或者更低浓度电解液可以达到同样离子电导率;⑦钠离子电池在电池充放电过程中钠不会与铝产生电化学合金化反应,因此负极也可以采用铝箔作为集流体(铝箔价格约为铜箔的1/3),既有利于电池的安全(避免过放引起的集流体氧化且可以过放电至零伏),又达到了进一步降低电池成本的目的。此外,钠离子电池电极极片制作时,在铝箔集流体两面分别涂覆正极材料和负极材料,并将极片进行周期性的叠片,还可以做成双极性(bi-polar)电池。这在单体电池中实现了高电压,可大量节约其他非活性材料,进一步提升电池的能量密度。而且由于钠离子电池与锂离子电池相似的结构,在规模化生产中可借鉴锂离子电池的生产检测设备、工艺技术和制造方法等,可加快钠离子电池的产业化速度。钠离子电池在其他方面性能如高低温性能、安全性能等方面是否存在其自身特点及独特优势,仍需进一步挖掘。2 钠离子电池产业化现状及发展趋势2.1 产业化现状2010年以来,钠离子电池受到国内外学术界和产业界的广泛关注。目前,钠离子电池已逐步开始了从实验室走向实用化应用的阶段,国内外已有超过二十家企业正在进行钠离子电池产业化的相关布局,并取得了重要进展,主要包括英国FARADION公司、法国NAIADES计划团体、美国Natron Energy公司、日本岸田化学、丰田、松下、三菱化学,以及我国的北京中科海钠科技有限公司、浙江钠创新能源有限公司、辽宁星空钠电电池有限公司等(图4)。不同企业所采用电化学体系各有不同,其中正极材料体系主要包括层状氧化物(如铜铁锰和镍铁锰三元材料)、聚阴离子型化合物(如氟磷酸钒钠)和普鲁士蓝类等,负极材料体系主要包括软碳、硬碳以及软硬复合无定形碳等。图4   全球钠离子电池产业化布局英国FARADION公司较早开展钠离子电池技术的开发及产业化工作,其正极材料为Ni、Mn、Ti基O3/P2型层状氧化物,负极材料采用硬碳。现已研制出10 A·h软包电池样品,能量密度达到140 W·h/kg,电池平均工作电压3.2 V,在80%DOD下的循环寿命预测可超过1000次。美国Natron Energy公司采用普鲁士蓝材料开发的高倍率水系钠离子电池,2 C倍率下的循环寿命达到了10000次。但普鲁士蓝(白)类正极材料压实密度较低,生产制作工艺也较复杂,其体积能量密度仅为50 W·h/L。由CNRS、CEA、VDE、SAFT、Energy RS2E等多家单位共同参与成立的法国NAIADES组织开发出了基于氟磷酸钒钠/硬碳体系的1 A·h钠离子18650电池原型,其工作电压达到3.7 V,能量密度90 W·h/kg,1 C倍率下的循环寿命达到了4000次。但是钒有毒性且原料成本较高。同时氟磷酸钒钠电子电导率偏低,需进行碳包覆及纳米化,且压实密度低。此外,丰田公司电池研究部在2015年5月召开的日本电气化学会的电池技术委员会上也宣布开发出了新的钠离子电池正极材料体系。三菱化学也与东京理科大学一直在开展关于钠离子电池方面的合作研究。国内钠离子电池技术研究也一直处于前列,其中浙江钠创新能源有限公司制备NaNi1/3Fe1/3Mn1/3O2三元层状氧化物正极/硬碳负极体系的钠离子软包电芯能量密度为100~120 W·h/kg,循环1000次后容量保持率超过92%。依托中国科学院物理研究所技术的中科海钠公司已经研制出能量密度超过135 W·h/kg的钠离子电池,电池平均工作电压3.2 V,在3 C/3 C、100%DOD循环1000次后容量保持率91%。现已实现正、负极材料的百吨级制备及小批量供货,钠离子电芯也具备了MW·h级制造能力,并率先完成了在低速电动车和30 kW/100 kW·h储能电站的示范应用。2.2 存在的问题及发展趋势钠离子电池技术和产业的发展一定程度上可以借鉴锂离子电池,可谓是“站在了巨人的肩膀上”。然而也要意识到目前在钠离子电池产品研发和实现其产业化的过程中依然面临着一些挑战[]:①目前钠离子电池处于多种材料体系并行发展的状态,而其中一些正、负极材料体系加工性能等还有待进一步提高。其中负极无定形碳材料还有首周库仑效率偏低、储钠机理尚未明确等问题。此外,与正负极材料相匹配的电解液体系的开发也不足;②虽然目前钠离子电池的大部分非活性物质(集流体、黏结剂、导电剂、隔膜、外壳等)可借鉴锂离子电池成熟的产业链,但是对于核心的正负极材料和电解液等活性材料的规模化供应渠道依然缺失,其来料稳定性无法保证,进而影响生产工艺过程和产品质量的稳定性;③相比于锂离子电池,现有的钠离子电池体系能量密度还较低,单位能量密度下的非活性物质用量和成本占比会有一定的增加,致使其活性材料的成本优势无法完全发挥出来;④钠离子电池可参照锂离子电池设计及生产工艺技术,但却无法完全照搬,如钠离子电池负极使用铝箔集流体带来的产品设计、电极制作及装配工艺等的变化,化成老化工艺区别等;⑤由于钠离子电池工作电压上下限与其他成熟电池体系的差异以及较强的过放电忍耐能力等,现有的电池管理系统无法完全满足钠离子电池组的使用要求,需要重新设计开发;⑥目前暂无任何正式的有关钠离子电池的标准和规范发布,影响钠离子电池制造工艺的规范化及产品质量的一致性,也会导致不同企业之间的产品难以统一和标准化,不利于产品的市场推广和成本降低。接下来,钠离子电池的发展将会更加注重于解决产业发展过程中的工程技术问题和开发符合目标市场需求的产品,其相关技术和产业的发展趋势可以从以下几个方面来进行考虑。①进一步提高正负极材料体系的综合性能,并优化改性其生产制备工艺,提高材料稳定性。优化电解液体系,构筑更加稳定的正极|电解质和负极|电解质界面等。②根据不同应用场景逐渐形成对应的主流钠离子电池体系。同时优化电池设计及生产制造工艺,降低非活性物质的用量,继续提高电池能量密度、循环寿命以及安全性能。③结合钠离子电池特点针对性发展并优化适用于钠离子电池的相关技术体系,包括电芯设计、极片制作、电解液/隔膜选型、化成老化以及电芯评测等技术。④根据钠离子电池的特性针对性开发相应的电池管理系统,以进一步提升电池组整体寿命以及安全性。同时优化钠离子电池成组技术,如开发钠离子电池的无模组电池包(CTP)技术、双极性电池技术等。⑤联合更多的科研单位及企业共同攻关,打通钠离子电池上下游供应链,尽早完成针对钠离子电池的相关必要标准的制定。⑥调整生产规模,优化销售环节,降低钠离子电池的单位成本,提高市场的接受程度(尤为重要)。根据现有的钠离子电池技术成熟度和制造规模水平,将首先从各类低速电动车应用领域切入市场,然后随着钠离子电池产品技术的日趋成熟以及产业的进一步规范化、标准化,其产业和应用将迎来快速发展期,并逐步切入到各类储能应用场景,如可再生能源(如风能、太阳能)的存储、数据中心、5G通讯基站、家庭和电网规模储能等领域。3 钠离子电池标准现状国际标准包括各类国际标准组织制定的世界范围内适用的标准、发达国家的国家标准、区域性组织的标准、国际上权威的团体标准和企业标准中的先进标准等。我国的标准一般有国家标准、行业标准、地方标准和企业标准四级。国际上涉及电池相关标准的机构,主要有国际电工委员会(IEC),国际标准化组织(ISO)、联合国危险货物运输委员会(UN/CETDG)等,我国相关机构主要有国家标准化管理委员会、中国电子技术标准化研究院和全国信息技术标准化技术委员会等。通过这些机构所提供的公开系统进行查询发现,截至目前,未查询到有专门针对钠离子电池有关的国际标准、国家标准、行业及地方标准等。这主要是由于全球范围内钠离子电池还处于产业化的初级阶段,上下游产业链还不是十分成熟,导致目前暂无正式的标准或规范推出,但相关企业和从业人员已经逐渐开始关注钠离子电池标准的布局工作。钠离子电池与锂离子电池有相似的工作原理和电池结构等,可以沿用和借鉴现有已成熟的锂离子电池生产工艺和产业链。因此,钠离子电池作为类似产品在一定程度上可以参照锂离子电池已发布或引用的相关标准及规范。锂离子电池经过二十多年的发展,其各类国家、行业和地方标准或规范的覆盖面已经十分广泛,全面涉及到了电池的术语和定义、命名规则、产品设计要求、试验方法、质量评定程序、安全及环境适应性能,标志、包装、运输和贮存等方面的内容。现阶段钠离子电池企业也主要是参照或借鉴这些标准或规范的相关内容(表2),并结合钠离子电池自身的特性和产业发展情况来制定各自的企业标准或产品规范,以此规范产品设计及制造工艺、确保产品质量的一致性,但这也会导致不同企业之间的产品难以统一和标准化,性能和技术水平参差不齐。表2   可供钠离子电池参考的相关标准当然,钠离子电池具有其独特的性质,完全参考锂离子电池已发布或引用的标准及规范存在较大的局限性。钠元素的自然属性决定了钠离子电池特性与锂离子电池不同,主要体现在:①Na+/Na电对的标准电极电位比Li+/Li高约0.3 V,表现在钠离子电池工作电压范围与锂离子电池的差异,所有参照标准或规范中与此相关的各项参数指标无法通用,需要进行调整;②钠离子在电池材料中嵌入与脱出动力学性能与锂离子不完全相同,各类标准中涉及到产品性能检验部分的内容需要变更;③钠离子电池可以采用铝箔作为负极集流体,不存在过放电的问题,还可在放空电后甚至是零电压下运输,因此一些安全测试标准、产品运输及储存规范等也不能通用。综上所述,专门制定适用于钠离子电池的标准对于其技术和产业的发展意义重大。4 锂离子电池标准化工作的发展及借鉴意义4.1 锂离子电池标准发展历程1991年,日本SONY公司首次推出了18650这种标准型的电池型号,开启了锂离子电池的商业化应用,并应用于笔记本电脑、手机、数码相机等便携式电子产品。在我国早期的锂离子电池应用过程中,其产品标准主要参照各生产制造企业的企业标准,后随着我国锂离子电池产业规模不断扩大、产品性能不断提高,亟需制定统一的锂离子电池行业或国家标准。1998年,我国电子工业部发布了行业标准《SJ/T 11169—1998锂电池标准》,首次提到了对锂离子电池的相关技术要求,但没有严格区分锂电池(原电池)和锂离子电池。1999年,我国信息产业部发布了第一个专门针对锂离子电池的行业标准《YD/T 998.2—1999移动通信手持机用锂离子电源及充电器充电器》。随后在2000年,中国电子技术标准化研究院牵头主导了国家标准《GB/T18287—2000蜂窝电话用锂离子电池总规范》的制定,这是全球首部关于锂离子电池的国家标准,对推动我国锂离子电池的产业和技术发展起到了非常重要的作用。至此,锂离子电池标准化发展首次经历了从企业标准到行业标准再到国家标准的过程。近年来,随着锂离子电池应用从传统的便携式电子设备发展到新能源电动车、储能系统等领域,单一化的标准体系模式已难以适应。以综合标准化为原则,锂离子电池全产业链、全生命周期(包括产品回收)、全应用领域标准的制定工作等正在逐步推进。同时,2018年12月,为适应产业发展需求,有关单位提出了筹建全国锂离子电池及类似产品标准化技术委员会的申请,其中类似产品包括了正在研制开发的钠离子电池、镁离子电池、锂金属蓄电池和锂离子固态电池等。综上所述,根据锂离子电池标准的发展历程,作为其类似产品的钠离子电池的各项标准化建设工作是有迹可循的。4.2 钠离子电池标准技术体系框架2016年11月,工信部正式发布了《锂离子电池综合标准化技术体系》,首次将锂离子电池及类似产品的标准化工作纳入了统一的宏观规划。该技术体系将锂离子电池及类似产品的标准分为了5种:基础通用、材料与部件、设计与制程、制造与检测设备以及电池产品。而作为锂离子电池的类似产品,钠离子电池在其标准化建设时也可借鉴锂离子电池的方式建立对应的标准技术体系框架(图5),完善其标准体系布局。图5   钠离子电池综合标准化技术体系框架综上所述,虽然现有的锂离子电池标准或规范不能在钠离子电池上通用,但锂离子电池的标准化工作的发展历程、标准体系的编制原则和构成、发展现状等对后续钠离子电池的标准化工作建设具有非常重要的借鉴和指导意义。5 对钠离子电池标准发展必要性和建议标准的制定和统一,可规范专业用语,起到较好的行业引领作用,带来规模化效应以降低成本,抢占标准化制高点,并有助于服务企业,满足市场需求。同时电池产品的标准,尤其安全标准是约束产品质量的重要依据,也是规范市场秩序和推动技术进步的重要手段。近年来,低速电动车以及各类储能应用等领域呈现高速发展的态势,钠离子电池凭借独有的优势,其研究及产业化迎来了前所未有的机遇。目前已陆续成功在各目标领域开展了示范应用,相关产品也在逐步面向市场推开,与钠离子电池关联的产业蓄势待发,这对制定钠离子电池相关标准的需求日益迫切。首先,在无钠离子电池产品相关国家标准、行业标准和地方标准的情况下,当钠离子电池产品开始进入市场推广应用时,应由相关企业根据产品特点并结合低速电动车和储能等目标应用领域的使用要求制定钠离子电池产品的企业标准,并上报有关行政主管部门审核、备案,以此作为企业组织产品生产、判定产品质量以及销售的依据。可从专业术语、产品开发设计、生产制造、性能指标及检验方法、使用方法和注意事项以及贮存运输等环节入手,并参照和借鉴锂离子电池的相关标准的情况开展钠离子电池产品企业标准的制定工作。其次,随着钠离子电池产业进入快速发展期,建议各级有关部门将钠离子电池的标准研究列入科技计划,给予科研经费支持,引导钠离子电池领先企业投入人力、物力进行前瞻性研究和布局。同时成立专项小组,由领先企业牵头起草,在条件成熟适时推出具备科学性、适用性和可执行性的钠离子电池相关国家、行业和地方标准,统一并规范钠离子电池产品的技术要求并作为行业准入门槛。同时,在国家提出的“中国标准走出去”战略指导下,积极向国际有关标准机构提交钠离子电池国际标准的制修订项目提案,主导或参与制定钠离子电池相关国际标准。并争取国内钠离子电池标准或者标准中的技术内容被国外标准采纳或直接转化为国际标准,进而提高我国钠离子电池产业的竞争力,促进整个钠离子电池产业链的健康、可持续发展。最后,根据产业和技术的进一步发展,逐步细分并详细制定钠离子电池的各类标准,覆盖其产业链和生命周期(图6)。从钠离子电池产业链的角度,可以分为原辅材料、电芯、电池管理系统、电池组、检测及生产设备、工厂设计等标准;从钠离子电池生命周期角度,可以分为设计、生产、运输、贮存、使用、回收等标准。与此同时,还应该意识到标准是对一定时期的总结归纳,用以指导产品技术和产业的发展方向。但是由于钠离子电池技术和产业的不断发展,相关新技术等的不断出现,原有的标准可能不能完全适应,进而对产业技术的发展起到反作用,此时需要根据钠离子电池的技术发展状态与时俱进,适时开展相应标准的制修订工作。图片离子电池标准分类此外,制定钠离子电池相关标准不仅要基于各阶段降成本驱动抑或是大规模标准化生产等的需求,也要为将来电池回收利用及环保等方面进行考虑;同时加强标准数据库及共享体系的建设,成立公开、透明、关联的标准共享平台,并适时推进钠离子电池标准的国际化,争取在全球钠离子电池产业中掌握优先权和主动权。6 结 语钠离子电池应用技术兼具高性价比和高安全的优势,当面对即将到来的大规模储能国家战略需求以及崛起的智能电网覆盖下的家庭储能市场时,可缓解因锂资源短缺引发的新能源电池发展受限的问题,同时可实现在新型储能应用中的无铅化,产业化前景相当乐观。从竞争格局来看,我国钠离子电池无论从技术水平还是产业化推进速度在国际上都处于前列,且拥有钠离子电池核心技术和自主知识产权,自主创新也是标准的灵魂。产业发展,标准先行,事实证明,标准意味着市场认可的新技术与新规范,主导标准者才能占据市场竞争和行业的制高点。在这方面,我国已具备较大优势,应力争获得全球钠离子电池标准制定的主导权,引领钠离子电池技术与应用的发展趋势。现阶段,优先支持部分性能优异的钠离子电池产品进入国家或地方电池类产品目录,可尽快推动钠离子电池的市场化应用,为促进我国新能源电池行业的发展做出贡献。而标准则可作为钠离子电池产品进入国家或地方产品目录的检验依据和准入门槛。因此,制定钠离子电池相关标准刻不容缓。引用本文: 周权,戚兴国,陆雅翔等.钠离子电池标准制定的必要性[J].储能科学与技术,2020,09(05):1225-1233.ZHOU Quan,QI Xingguo,LU Yaxiang,et al.The necessity of establishing Na-ion battery standards[J].Energy Storage Science and Technology,2020,09(05):1225-1233.

作者: 周权 胡勇胜等 详情
description
中美科学家研有机聚合物制高性能电极 或实现低成本钠离子电池

下一代电池中的锂离子可能会被更丰富、更环保的碱金属或多价离子所取代。不过,最主要的挑战是要研发稳定的电极,能够将高能量密度和快速的充放电速率相结合。最近,中国和美国的科学家就研发了一种由有机聚合物制成的高性能电极,可用于低成本、环保且耐用的钠离子电池。目前,锂离子电池是最先进的技术,可用于便携式设备、储能系统和电动汽车,而且锂离子电池技术在今年荣获诺贝尔奖。不过,下一代电池有望使用更便宜、更安全、更环保的材料,实现更高的能量密度和容量。目前,研发得最多的电池种类都基本采用了与锂电池相同的充放电技术,不过通常锂离子都被钠、镁和铝等廉价的金属离子所取代。然而,这种替代也使得需要对电极材料做出重大调整。有机化合物是很好的电极材料,首先,不含有害和昂贵的重金属;其次,可以用于不同的用途。不过,缺点是会溶解在液体电解质中,导致电极不稳定。美国马里兰大学(niversity of Maryland)的Chunsheng Wang及其团队与国际科学团队合作,推出了一种有机聚合物,能够成为高容量、快速放电且不易溶解的电池阴极材料。根据该项研究,在钠离子电池中,该种聚合物在容量传递和容量保留方面优于目前的聚合物和无机阴极,而在多价镁离子和铝离子电池中,此种表现也没有落后太多。科学家们发现六氮杂三萘(HATN)是一种非常合适的阴极材料,而且已经在锂电池和超级电容器中对此种化合物进行了测试,证明其能够成为一种高能量密度的阴极,快速插入锂离子中。但是,与大多数有机材料一样,HATN会在电解液中溶解,导致在充放电循环过程中,阴极不稳定。科学家们解释说,现在的关键是通过让单个分子之间联系,稳定材料的结构,结果得到了一种称为聚合HATN或PHATN的有机聚合物,能够让钠、铝和镁离子具备快速的反应动力和高容量。在组装好电池后,科学家们采用高浓度电解液测试了PHATN阴极,并发现非锂离子具有优异的电化学性能。该钠电池可以在高达3.5V的高压下工作,即使经过5万次循环,其容量仍可维持在每克100毫安时以上。研究人员认为此类聚合对二氮杂苯阴极(对二氮杂苯是一种基于HATN的有机物,是一种芳香烃类富氮有机物质,含有果味),可实现环保、高能量密度、充放电快速且超稳定的下一代可充电电池。

作者: 沈阳蓄电池研究所新闻中心 详情
description
为储能电池“加料” 我国科学家研制出新型钒液流电池电极材料

记者从长沙理工大学获悉,该校丁美、贾传坤教授团队,联合重庆大学教授孙立东、中科院北京纳米能源与系统研究所研究员孙其君,及中科院金属研究所等多个科研团队,利用电沉积和氧化还原靶向催化交叉结合技术,共同开发出了一种大规模储能钒液流电池用的普鲁士蓝复合电极材料,可显著提高钒液流电池功率密度和能量效率。这种新型电极材料,有望助推钒液流电池“提质降本”,为其进一步商业化应用提供了新思路。目前,成果进入应用孵化阶段,这一研究成果也于日前发布于全球工程技术与材料类著名期刊《SMALL》上。可再生能源开发和利用的迫切性,众所周知。可再生能源的快速发展,则有赖于高安全、低成本、长寿命的大规模储能新技术。电化学储能,是储能技术的一个重要分支。其中,钒液流电池因具有循环寿命长、安全可靠、功率与容量独立等优点,是目前最有应用前景的大规模储能技术之一。不过,要将这类电池产业化,则“受制”于电池性能和成本。电极材料是决定钒液流电池功率成本和效率的关键材料之一。目前,最常用的电极材料为碳毡或石墨毡,这类电极材料对钒离子的催化活性低,比表面积也低,成为钒液流电池“提质降本”,进入商业化应用的瓶颈。寻找到高活性、低成本的电极材料,是业内专家研究的热点和重点。研究团队历时3年,开发了该种普鲁士蓝复合电极,有效提升了钒离子反应活性,从而显著提高了钒液流电池功率密度和能量效率。“用这个复合电极组装的钒液流电池,功率密度较碳毡电极提升了50%以上。在100毫安每平方厘米的电流密度下,能量效率甚至超过88%。”丁美说。

作者: 沈阳蓄电池研究所新闻中心 详情
description
钒电池能否挑战锂电池地位?业内专家:前者更适合规模储能环节

锂电池产业已经十分成熟,资本市场也已经孕育了宁德时代(300750,SZ)等优质龙头。新能源电池的路线这么多,这一产业未来是否还会有黑马杀出?钒电池成为被看好的其中一条路线。今日(7月31日),由四川省钒钛钢铁产业协会和中国铁合金在线联合主办的第十届中国钒业发展论坛在成都召开。会上,钒电池技术路线成为业内热议问题。多位业内专家表示,随着风能、太阳能等清洁能源的发展,储能环节将为钒电池带来巨大的需求。相较锂电池,钒电池的安全性、储能容量都有优势。不过,钒电池要完成成熟的商业化进程,还需要解决高成本等制约条件。中国科学院金属研究所研究员严川伟表示,大规模储能环节适合钒电池。图片来源:每经记者 胥帅 摄钒电池需求在规模电力储能在第十届中国钒业发展论坛上,钒资源的发展等成为热议问题。“加快培育世界级钒钛钢铁现代产业集群。”四川省经济和信息化厅党组成员、副厅长翟刚在论坛上表示,四川钒资源储量约占全国总储量的63%,大部分集中在四川攀西地区。其中,攀钢集团钒产业国内第一,目前也是世界排位第一。在四川省“5+1”现代产业体系中,提出加快建设钒钛钢铁稀土等先进材料产业。钒电池,曾经在2018年火过一阵。伴随钒电池概念的兴起,2018年的攀钢钒钛因掌握上游资源被资金热炒。当年9月到10月间,攀钢钒钛(000629,SZ)股价上涨超过了50%。不过钒电池的商业应用迟迟未有突破,炒作幅度自然无法与成熟的锂电池板块相比拟。从规模看,截至2019年底,中国已投运储能项目累计装机规模32.4GW,其中电化学储能的累计装机规模位列第二。这当中,锂离子电池的累计装机规模最大,为1378.3MW,占比80.6%;钒电池为代表的液流电池装机规模仅有20.52MW,占比1.2%。不过钒电池的装机量正在逐步增长,据国际钒技术委员会统计,全球在运行的钒电池项目达到113个,总装机为39.664MW,总容量为209.8MWh。四川星明能源环保科技有限公司副总工程师张忠裕表示,2020年上半年,国内外钒电池生产和应用市场已逐渐活跃。“钒电池现在处于商业化前期,它主要应用于新能源储能环节。”张忠裕告诉《每日经济新闻》记者,储能是钒电池的最大优势,特别适用风力发电、光伏发电的储能环节,“像光伏发电主要在白天作业,晚上没有阳光怎么办?”中国科学院金属研究所研究员严川伟表示,新能源产业链的储能需求,对钒电池这类液流电池来说是刚性需求。“储能必须做到能源安全,要求电池具备稳定性。大规模储能环节,钒电池安全的稳定性就很高。”严川伟对《每日经济新闻》记者表示,根据《关于促进储能技术与产业发展的指导意见》,以10%为配比,2020年光伏发电储能达到6GW,储能金额为300亿元。不只是光伏,电网削峰填谷同样存在巨大的储能需求。商业化突破需降低成本通常来说,钒电池都会被用来与锂电池比,但严川伟认为这样的比较并不科学。严川伟表示,锂电池和钒电池的应用场景不一样,比较优势不一样,缺点也是各不相同。更为关键的是,锂电池已经进入成熟的商业化运作,钒电池距离这一市场水平还有一段路要走。“锂电池的理论和应用很成熟,能量密度很高,这是优势。但钒电池是用于规模电力的用途。”严川伟说,这涉及到不同的产业环节,钒电池适合大容量储能应用,锂电池则涉及小容量。基于不同的应用场景,两种电池展现的技术优势也各不一样。钒电池充放电不涉及固相反应,电解液使用的损耗非常小。基于这一优势,钒电池用于大规模电力储能时,会减少传输阶段的电力损耗。张忠裕说,况且钒电池体量比锂电池大,这决定它很难直接用于新能源汽车。但需要注意的是,钒电池虽然展示了在储能领域的技术优势,可商业化进程为何没有大的突破?“主要还是成本太大。”张忠裕说,他此次在论坛的报告主题就是降低钒电池成本,“10kW/40kWh钒电池储能系统为例,储能系统成本占比最大为钒电解液成本,占总成本的41%,电堆成本达到37%,两者总和达到78%。降低钒电池价格最有效的办法就是降低钒电解液及电堆的生产成本。”严川伟表示,降电堆成本就是要开发低成本材料、提高电流密度,降电解液成本就是要有低成本的钒源、低成本技术路线。张忠裕说,钒电池的材料成本高,“主要是没有大规模商业化,缺乏产业配套的企业。产业成熟,规模经济起来了,单位成本就会降低。”另一方面,张忠裕认为,钒电池产业环节具有较高的门槛,即初始的投资要求较高,“虽然拉长时间周期,整体成本和锂电池差不多。但它的初始投入资金就高出很多。”所以,严川伟也建议企业要进入钒电池领域,需要明确在产业链的定位。严川伟和张忠裕均表示,钒电池解决了经济性问题,那么产业化和商业化的那天就能很快到来。但也有业内人士表示,钒电池是钒需求潜在增长点,但不确定性很大,“有一定前景,仍需要通过示范工程验证”。不过总体来看,钒电池的未来还是被广为看好,钒矿资源也会有需求。

作者: 沈阳蓄电池研究所新闻中心 详情
description
中国科学家研发出新一代全钒液流电池电堆

中国科学院大连化学物理研究所(以下简称“大连化物所”)11日发布消息称,该所研究员李先锋、张华民领导的科研团队近日成功研发出新一代低成本、高功率全钒液流电池电堆。风能、太阳能等可再生能源固有的随机性、间歇性、波动性、直接并网难等特性,一定程度上限制了可再生能源的发展利用。全钒液流电池是一种高性价比、高能效、长寿命的规模储能技术,其可将不稳定的可再生能源储存,并实现平稳输出利用。经测试,该电堆在30千瓦恒功率运行时,其能量效率超过81%,100个循环容量无衰减。据介绍,全钒液流电池储能系统由电堆、电解质溶液、管路系统等组成,其中电堆起到了至关重要的作用。而相对于传统全钒液流电池电堆,新一代电堆采用的可焊接多孔离子传导膜可以提升离子选择性,提高电解液的容量保持率,此外,多孔离子传导膜的成本远低于商业化的全氟磺酸膜,从而可大幅度降低电堆成本。“我们通过应用自主研发的可焊接多孔离子传导膜,实现了对电池电堆组装工艺的改进。”大连化物所研究员李先锋表示,新一代全钒液流电池电堆不但保持了传统电堆的高功率密度,相比传统电堆,其总成本也下降了40%。大连化物所方面表示,新一代全钒液流电池电堆的成功研发,将大幅度降低全钒液流电池系统的成本,推动全钒液流电池的产业化应用。上述工作得到了中国科学院“变革性洁净能源关键技术与示范”战略性先导科技专项、国家自然科学基金等项目的支持。(完)

作者: 杨毅 详情

质检信息 更多

视频系统 更多

  • description 819电池节丨为行业加油,为梦想添能

供应信息 更多

  • description VRLA 船舶潜艇机车铅酸蓄电池外壳 OPZS 200ah
  • description 2V 太阳能机车铅酸蓄电池外壳 OPZV 200ah
  • description 铅酸电池补水
  • description 电池自动补水系统

求购信息 更多

品牌推荐