沈阳蓄电池研究所主办

业务范围:蓄电池检测、标准制定、《蓄电池》杂志、信息化服务

新闻中心 更多

图片描述
BCI大会及Power Mart博览会通知

作者:中国·蓄电池网 详情
图片描述
瑞达副总经理刘毅:固态铅电池在储能的应用技术方案和案例

3月12日,备受瞩目的第十四届中国国际储能大会上,瑞达国际集团副总经理刘毅发表了题为“固态铅电池在储能的应用技术方案和案例”的精彩演讲,深入探讨了安全储能技术的未来发展方向。破解行业安全痛点,OPzV无酸固态铅电池引领能源革新  在全球能源转型和碳中和目标的推动下,储能产业步入发展快车道。然而,安全事故频发成为制约行业高质量发展的重要因素。刘毅副总经理强调,安全是储能产业持续健康发展的基石。为此,瑞达国际集团致力于研发本质安全的OPzV无酸固态铅电池,从材料层面实现了电池安全性的革命性突破。瑞达国际集团刘毅副总经理瑞达国际集团刘毅副总经理发表演讲环保与经济效益双丰收,OPzV无酸固态铅电池展现卓越优势  除了安全性,OPzV无酸固态铅电池还具备显著的环保和经济效益。作为国家工信部认证的绿色产品,退役电池可实现100%回收,回收残值高达0.3元/Wh。在储能电站的运营与维护方面,由于该电池的稳定性和长寿命,使得运营成本大幅降低,投资收益显著。OPzV无酸固态铅电池产品矩阵全面升级,满足多场景应用需求  瑞达国际集团以市场需求为导向,不断推动技术进步与创新,成功打造了多款具有竞争力的安全储能产品。其中,OPzV无酸固态15KWh储能电柜、OPzV无酸固态40KWh储能电柜、OPzV无酸固态216KWh储能柜以及大型兆瓦级和百兆瓦级室内储能系统等产品,可广泛应用于发电侧、工商业侧、微电网和家庭储能等多个领域。这些产品不仅有助于降低用电成本、保障用电稳定性,还能提高自发自用电的效率,为用户带来实实在在的经济效益。OPzV无酸固态铅电池系列安全储能产品  作为储能领域的领军企业,瑞达国际集团凭借22年的深耕经验,始终致力于新能源技术创新与优质产品和服务的提供。我们积极响应国家号召,为“碳达峰”、“碳中和”目标贡献力量,充分发挥技术优势,抓住发展机遇,推进新能源领域战略布局。五大蓄电池产业基地的成立,是我们技术实力的有力证明。  瑞达研发的电池性能卓越,多项技术指标达到并超越国际标准,拥有众多自主技术和专利。我们的产品广泛应用于电源侧、电网侧、用户侧,为全球客户带来清洁、高效的能源解决方案。

作者:中国·蓄电池网 详情

公告 更多

政策法规 更多

热点资讯 更多

description
锂电池在船舶中的应用

【摘要】探讨了锂电池在船舶储能、船舶动力方面的应用前景,对锂电池在船舶中应用的政策、规范、应用现状和存在的问题进行了阐述,对锂电池的类型和磷酸铁锂电池应用于船舶的优势及主要应用场景进行了讨论,研究了锂电池的龙头企业状况,并对拓展锂电池在船舶中应用的可行性和意义进行了分析,提出了未来拓展的初步思路。  一、锂电池在船舶动力中的应用  目前船舶使用最多的动力系统是柴油机船舶动力系统,但柴油机动力系统存在着许多的问题。第一,柴油机使用的是重油或是不可再生能源,资源压力大,使用成本也极高。第二, 柴油机运行中产生的噪音、振动问题难以解决。第三,柴油机的废气废料排放问题极其严重,对环境造成的污染。  随着对环境污染、资源紧缺等问题越来越重视,航运业污染问题也受到越来越多人的关注。船舶是排放大户,近年来各国航运业积极行动,不断推动和拓展绿色船舶技术的应用。  虽然业界关注的船舶新能源种类众多,如LNG、甲醇、LPG、生物质燃料、太阳能、氢气、燃料电池、锂电池等,但真正能够实现零排放,并在海运业逐步推广且具初步市场规模的新能源动力,目前只有锂电池电动船舶。纯电池动力船舶主要适用于航线固定、航程短、补点便捷的场合,对于航线距离相对较长的场合,柴电混合动力则更能兼顾节能减排与航程适应性。  1. 锂电池在纯电动船舶的应用  相较传统的推进系统,电力推进系统具有经济性良好、操纵灵活、安全性高、振动小和可靠性高等特点,电力推进系统现广泛应用于渡轮、挖泥船、拖轮和大型邮轮等。随着电力电子技术快速发展以及能源危机日益加剧,电力推进替代传统的柴油机推进成为不可阻挡的趋势。  电力推进技术依靠其在机动性、可靠性、运行效率、布置灵活性、经济性、易于维护等方面的巨大优势,广泛应用于工程船、油船、豪华游船等船舶上。在世界各国都在追求可持续发展、倡导低碳经济的今天,其将成为未来绿色船舶的前进动力。  在国外,几个大的船舶电力推进生产厂商都有自己的电力推进系列产品,并已将其投入实际运行中,例如ABB公司的Azipod推进系统,J、Siemens公司与Schottel公司的SSP推进系统。然而,船舶电力推进一直面临着一个技术难题,即频繁的负载扰动给推进系统的性能带来了重大影响。一方面,海洋环境复杂多变,风、浪、流对负载的影响不可预知,带来的扰动也在不断变化;另一方面,某些工程船(破冰船、挖泥船、海上钻井平台等)在作业时除了受环境干扰以外,其负载功率需求还随工况要求等客观因素的变化而变化,会产生巨大的负载扰动。显然,这些负载扰动会给船舶电网带来巨大冲击,对船舶推进系统的性能有着巨大影响。解决该问题的一个办法是采用能量存储技术。储能单元可以提高系统的稳定性,在电力系统遇到扰动时,其可以瞬时吸收或释放能量,平复扰动给系统带来的影响,增强系统的稳定性。近年来,大容量存储技术飞速发展,几个大的储能单元生产商(如Corvus Energy公司和Maxwell公司)都在生产自己的大容量储能产品并将其投入到实际运行中。  2. 锂电池在混合动力船舶中的应用  混合动力船舶过去通常指的是柴−电混合动力船舶,但随着船舶新能源技术逐步得到推广,以太阳能、燃料电池LNG等为代表的新能源技术开始在船舶上应用,使混合动力船舶定义越来越广。混合动力船舶包含了以电能为中心的多种能量来源,其多样性赋予了船舶运行灵活、经济的优点,而不同能量来源只有通过管理,充分利用各自的特性、协调控制它们之间的流动,才能在保证船舶的功能性、安全性的同时,有效降低能耗、减少排放。  在混合动力船舶中,锂电池主要有两大作用,供能和储能。锂电池可以根据船舶不同的使用要求进行方案设计,主要有以下应用:  1)电力保留,防止船舶失电。  2)削峰填谷:可以在负荷最大的时候,通过锂电池短期供电;负荷较小的时候,电网给锂电池进行充电补充。  3)弥补发电机组的特性不足:可将突加的负荷转 移到电池组上承受,有效地规避了“闷车”风险。  4)作为电力直接对电网进行供电:船舶不配备柴油发电机,直接采用电池系统对船上的设备进行供电,推进系统采用电动机提供动力,就可以实现船舶“零排放”。  二、锂电池在船舶储能中的应用  在多数情况下,船舶电力推进系统都是内燃机驱动发电机组为系统供电。由于海洋环境复杂多变,负载是变化的,当负载偏离最佳负荷点时,燃油就会得不到充分燃烧,燃油的利用率随之大幅度下降,同时会产生大量的氮氧化物和硫氧化物,对环境造成污染。  能量存储技术是解决这一问题的办法之一。利用储能单元在系统轻载时将多余的能量储存起来,来防止该能量对电网的冲击。在系统过载时,储能单元释放能量来满足负载的需求。能量存储技术已经很好的应用于电动汽车行业。而大容量能量存储技术的发展,使得储能单元应用于船舶电力推进系统成为可能,利用储能单元来克服功率波动对船舶电力推进系统的影响将是未来船舶推进技术发展的新方向。  储能系统可增强汽轮机功率提升能力,提高汽轮机调速水平,改善电网质量,实现发电的平滑输出,从而增加了系统的稳定性和可靠性。同时,储能系统也能将多余的能源储存起来,一定程度上提高了船舶运行的经济性。另外,由于船舶所处环境较为恶劣,且长期远离陆地,遇险救援时效性较差,因此,对于保证安全的电力系统要求很高。储能系统作为电力系统最可靠的能源,是保护船舶安全的最后一道屏障。  根据储能载体区分,储能方式主要分为电化学储能、物理储能和电磁储能三种。其中电化学储能主要包括电池储能和超级电容器储能;物理储能主要包括抽水储能、高压空气储能和飞轮储能;电磁储能主要包括超导储能。  在各种储能方式中,抽水储能、压缩空气储能因为响应速度慢,不能满足船舶的要求。超导储能能量密度过低、成本过高且技术成熟度不高,实际运用中可靠性和经济性都不高,也不适合应用于船舶。船舶中主要应用的储能方式为电池储能、超级电容器储能和飞轮储能。超级电容器储能和飞轮储能两种储能方式都具有响应快、比功率高的特点。相比起来,超级电容器储能比功率更高,但比能量极低,放电时间极短,成本更高。  电池储能中,铅酸电池和锂电池是当前应用较为广泛的电池。两种电池均具有额定功率高,放电时间长的优点。相比起来,铅酸电池技术更为成熟,成本较低,安全性较高,但比能量远低于锂电池,且环保性很差。锂电池本身电池特性更为优越,但技术成熟度还不高,散热问题较为严重,安全性不足。用作动力源的锂电池,按电芯材料分类,主要有三元锂、锰酸锂、磷酸铁锂、钛酸锂等几种,目前主流应用的是三元锂电池和磷酸铁锂电池。三元锂电池能量密度最大,但是出于安全原因,在电池管理系统需要投入更多资金,一定程度上限制了三元锂电池在国内船舶的应用。磷酸铁锂电池技术己相当成熟,广泛应用在陆用交通、 太阳能和风力发电发电储能、电动工具等领域,大规模的生产也使电池价格回落到较为合理的空间。结合国内船舶实际和电池产业现况,磷酸铁锂电池在船舶领域发展较快。  三、锂电池在船舶中应用的政策和规范  1、政策基础  为了推进新能源在船舶产业领域的应用,国家和地方出台了一些针对锂电池在船舶领域应用的政策。国家层面,虽然没有专门针对电池动力船舶的鼓励政策,但相关政策可见于各文件中。  2018年 11月30日,交通运输部印发《船舶大气污染排放控制区实施方案》,鼓励船舶使用清洁能源、新能源、船载蓄电装置或尾气后处理等替代措施以满足船舶排放控制的要求。  2019年 1月 4日,生态环境部等 11部委联合印发《柴油货车污染治理攻坚行动计划》,鼓励淘汰使用20年以上内河航运船舶,依法强制报废超过使用年限的航运船舶,推广使用纯电动和天然气船舶。  2019年 9月,中共中央国务院印发实施《交通强国建设纲要》,特别强调加强新能源在船舶行业的应用研究,要求推广新能源、清洁能源等技术装备,提升新能源船舶设计建造能力,强化新能源等前沿关键科技的研发。  2020年 6月,交通运输部发布《内河航运发展纲要》提出:加大新能源、清洁能源推广应用力度,推广 LNG节能环保船舶,探索发展纯电力、清洁燃料等动力船舶。  地方层面,各地方政府出台的政策更具针对性,这些政策的发布与实施极大地推动了当地电池动力船舶产业的发展。如深圳市制定的《2018年“深圳蓝”可持续行动计划》、广州市制定的《广州港口船舶排放控制作战方案(2018-2020年)》、武汉市制定的东湖等封闭水域禁止运行燃油船舶的要求,以及湖北省即将出台的禁止封闭水域运行燃油船舶的规定等。  2、规范基础  电池动力船舶属于较新的船型,船舶及相关产品的设计尚处探索期,政策法规尚处于完善期,无论国际还是国内相应的法规都不够健全。  国际方面,纯电池动力船舶的相关标准分散在国际海事公约、检验法规、船级社规范和船舶及相关行业之中,但尚未形成体系。SOLAS公约规定了电源及发电机组的要求,但一直没有将纯电池动力引入到公约当中,成为制约国际航行电池动力船舶发展的一个重要因素。《国际海运危险货物规则》规范了电池组运输的要求。部分船级社针对电动船也发布了相关的指南和要求。国际电动委员会(IEC)发布了22项涉及船舶电气、蓄电池及燃料电池安全、性能、防爆领域的标准。这些标准在一定程度上满足了电池动力船舶的要求,但未形成系统和完善的应用规范。  国内方面,电池动力船舶的相关标准制定基本能够满足现阶段电池动力在船舶上的应用。国内标委会制定了与 IEC对口的相关行业标准 22项,能够为当前电动船舶的设计建造提供一定借鉴。2019年11月,中国船级社发布《纯电池动力船舶检验指南》。自 2011年起,交通运输部海事局组织开展了电池动力船舶技术规范的制定工作。并于 2019年 7月 23日发布《内河船舶法定检验技术规则(2019年修改通报)》,2019年 11月 13日发布《内河船舶法定检验技术规则(2019)》,针对内河船舶电气要求和磷酸铁锂电池的性能特点,制定了相应的技术要求。规则的出台,大大促进了船舶行业电动化的快速发展。另外,东疆海事局在内河电池动力船舶规范基础上,继续积极推进沿海电池动力船舶技术规范的制修订工作,磷酸铁锂电池在海船上的应用已纳入 2020年船舶技术修订重点工作。同时将加快推动研究制定船用锂离子电池基础通用性能和试验标准。  四、锂电池在船舶中的应用现状  电池动力船舶是目前国际上最新颖的船型之一,其电气化特点能够为下一代智能船的发展提供基础。其设计和建造并不是动力系统的简单替代,需要设计和建造理念的革新。对于设计和建造部门来讲都是巨大的挑战。其船舶系统及功能的配备、设备操作和船员技能的要求、作业环境对船舶的影响、事故和风险的预防处置等方面较常规动力船舶更为复杂。各船级社、海事部门等都处于研究起步阶段,相关研究和设计体系尚不完善。  1、产业现状  从全球范围看,电池动力船舶的应用正处于探索、示范期,运营经验不足。截止 2019年 5月底,全球电动船舶数量为155艘,其中包括营运船舶 75艘,拟建造船舶80艘,已实现1000KWh到 4000KWh之间较大容量电池动力船舶的应用。电池动力的选择上既有磷酸铁锂电池,也有三元锂电池。我国内河已建纯电池动力船舶 20余艘,在建及计划建造纯电池动力船舶 10余艘。2015年以前,我国电池动力船舶的应用仅限于 600KWh以下的小型船舶 ;2015年以后,使用的最大电池容量达到 3000KWh,且全为磷酸铁锂电池。我国电池行业发展相对成熟, 但是船用产品及其配套产业占据的市场份额较小,参与船用电池认证的企业较少,仍存在较大发展空间。电池动力船舶的核心部件是为推进电池及其配套的电池管理系统。在全球前十的电池制造商中,国产厂家占到五家。2020年第一季度国内动力电池装机量合计约 5.68GWh, 涉及的装机动力电池企业 51家,其中宁德时代、比亚迪、国轩高科、 亿纬锂能、中航锂电等是排名靠前的企业,主要装机产品是新能源汽 车。国内锂电池配套船舶作为动力源,必须经过中国船级社(CCS)的资质认证。截至 2019年10月,中国船级社已完成和正在进行的船用电池产品认证共 37项,其中 15项动力电池项目、5项电池管理系统项目已经完成审核工作。在电池管理系统方面,中国船舶重工集团公司第 712研究所、711研究所、704研究所已具备纯电池动力系统及整船解决方案的设计和供货能力,无锡赛思亿已具备船舶直流网电力推动系统、混合动力推进系统、试验站用电系统的供货能力,中车上海汉格已具备直流电力推进系统、交流电力推进系统、ESS节能系统的供货能力。  2、港口配套现状  港口配套设施特别是充电设施是限制电动船舶发展的因素之一。截至2018年底,我国已建成岸电 2400余套,这些设备使用中存在与船舶供电不匹配等诸多问题,并且不能直接为纯电池动力船舶进行充电,但是为电池动力船舶获取动力提供了较好的硬件基础。随着《船舶大气污染物排放控制区实施方案》的持续推进,特别是船用岸电使用方面政策的强制实施,全国岸电的配套规模和区域有望进一步扩大和提升。  五、锂电池在船舶应用中的问题  1、缺少统一规划  一是电池动力船舶推广缺少统一部署。在电池动力船舶的应用和推广中,锂电池生产企业、电力企 业、配套企业各自推进,缺少国家层面的宏观规划,技术研发、发展路径、推广模式缺少统一的规划和指导。目前,我国只有个别省市出台了电动船建设、改造补贴方案,如《深圳市绿色低碳港口建设补贴资金管理暂行办法实施细则》《广州港口船舶排放控制补贴资金实施方案》,积累了一定的经验。同时,由于电池动力船舶虽然使用成本低,但前期投入较多,电池动力船舶推进系统的造价一般是传统动力系统的 2.2至 2.5倍。由于电动船产业规模较小,国家对新建、改建电池动力船舶并未出台专门的补贴政策,在电价优惠、岸电规划方面缺少统一的部署。二是缺少对锂电池全生命周期的规划。锂电池的生命周期受使用环境、充放电循环工况等因素的影响,电池一旦老化,安全风险会急剧增加。电池的负荷状态(SOC)由100%降低到 80%一般认为电池即将寿命终止,按照目前的技术标准, 厂家承诺的电池寿命为 8年,而船舶的寿命按照 20~30年计算,在船舶的生命周期内要进行三到四次的电池更换,对于电池的生产、使用、报废、分解以及再利用等整个生命周期的综合处理,缺少相应的政策引导。  2、技术法规不完善  一是船用标准尚未建立。锂电池根据不同的应用领域其性能标准不尽相同,目前船用锂电池性能标 准参用电动汽车的相关标准,基础通用性能和试验标准还未形成。考虑到船用锂电池蓄能能力是车用锂电池能力级别的几十倍甚至上百倍,且船用产品工作环境更恶劣、 安全性能要求更高,因而船用试验标准引用 IEC及国标电动车标准,存在一定的局限性和不适用性。船用标准的构建和完善是目前急需解决的问题。  二是检验法规尚不完善。虽然相关海事局已经编制了内河动力船舶技术规范,但是由于船用锂电池产业能力偏弱,尚不具备向长途、 大功率船舶供货的能力,因而对于沿海电池动力船舶相关法规的编制尚处于起步阶段。  三是锂电池作为船舶动力应用的研究有待进一步深入。电池动力船舶根据能源形式一般可归为两类:纯电池动力船舶和混合动力船舶。由于电池动力船舶实船较少,对此类系统的安全性、动力匹配性研究及积累的经验尚显不足。两种技术路径的优劣还有待实际运营的验证, 缺少数据积累。纯电池动力的安全性差、能量密度低,以及一次性投入成本太高等缺点,是制约其在船舶领域大规模应用的主要障碍。动力电池作为大容量储能元件,其本身具有起火爆炸等隐患,在船舶航行中存在电池失效、控制系统失效风险,在船舶操纵过程中存在因故障、特殊天气条件导致的安全返航风险,在船舶停泊充电期间存在船岸操作安全事故风险等。  3、企业技术水平不高  电池动力船舶的整体性能取决于两个方面:船舶设计建造水平和关键部件(如动力电池和能源管理系统)生产质量。  船舶建造设计方面,依然处于初级阶段,目前的电动船依然是能源动力的替换,需要按照电动能源的性能特点,进行创造性的设计革新。  就电池动力和能源管理系统而言,并未形成具有明显市场优势的电池系统供应厂商以及推进和动力供应商,核心部件和产品与国外存在一定差距,船用电池系统、船用电池动力制造能力尚且不足。  4、船型应用受限  目前国内锂电池动力船舶的容量一般控制5000KWh以下,其续航里程受充电装置、充电时间的限制,其应用仅限于在短途客运、渡轮、景区旅游客船、短途定航线货船领域。  六、磷酸铁锂电池在船舶中应用的优势  新兴的“锂电池电动船舶”以绿色环保、零污染、安全以及使用成本低等优点,将成为内河、湖泊的短距离运输船、观光船、轮渡船等的首选船舶。而作为锂电池家族最安全磷酸铁锂电池,伴随着近年来相关锂电池技术在安全、长续航、大功率、长寿命等技术难题的突破,磷酸铁锂电池以其相对较低的价格,较高的能量密度简易的维护,以及优异的安全性能将成为电动船舶发展的优选能源。相对于其它锂电池,磷酸铁锂电池应用于船舶具有以下优势:  1)磷酸铁锂电池安全性更高  磷酸铁锂电池安全性和耐高温性能优异正交橄榄石结构的LiFePO4 正极磷酸铁锂电池是目前最安全的锂离子电池正极材料,且不含有对人体有害的重金属元素,其橄榄石结构的晶体结构构架稳固,氧(O )与磷(P)以强共价键牢固结合,使其结构中的氧难以与电解质发生氧化反应,即便在高温情况下也不会形成结构崩塌发热,这能够很好的保证电池充放电过程的稳定性与安全性,磷酸铁锂电热峰值可达 350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20℃~+75℃),其优异的高温性 能、安全性方面具有突出的优势使其成为中大容量、中高功率锂离子电池首选的正极材料。  2)磷酸铁锂电池的使用寿命更长  磷酸铁锂电池,完整充电循环寿命在 2000 次以上,标准充放电(5 小时率)使用,一般可达到 2000 次。而铅酸电池的循环使用次数在 300 次左右,最大一般不超过 500 次,使用年限多在 1~1.5 年时间,相同条件下的磷酸铁锂电池理论寿命将达到 7~8 年。并且磷酸铁锂电池具备大电流放电能力,也可使用大电流 2C 快速充放电,而铅酸电池现在无此性能。  3)量产产品单位能量密度较高具备价格优势  据报道,2018 年量产的方形铝壳磷酸铁锂电池单体能量密度在 160Wh/kg 左右,2019 年一些优秀的电池厂家大概能做到175-180Wh/kg 的水平,个别厉害的公司量产的磷酸铁锂电池单体能量密度最高已突破 190Wh/kg,目前市场上已经有攻克磷酸铁锂电芯 200wh/kg 的高难度,并且磷酸铁锂体系还可继续提升能量密度,随着市场对未来电动船舶市场、储能市场的看好,未来磷酸铁锂电池应用在电动船舶领域的比例增多的同时必然会在能量密度将迎来较大的发展,同时单位价格也会呈现下降趋势。  4)绿色无污染的环保产品  磷酸铁锂电池一般不含任何重金属与稀有金属无毒无污染(由 Societe Generale de Surveillance S.A.认证通过),且符合欧洲《关于限制在电子电器设备中使用某些有害成分的指令(Restriction of Hazardous Substances) 规定,是绝佳的绿色环保电池。  七、磷酸铁锂电池在电动船舶中应用的主要船型  当前纯电动船舶在观光客船、景区画舫、沿江沿海渡船、和内河货船、港口拖船、江海联运散货船、集装箱船等多种船型等船型均有应用,船型方面包含客船、渡船、旅游船、公务船、工程船、干散货船、集装箱船等多种船型。不过现阶段超过 5000 吨级的中大型船舶完全锂电化难度依然较大。目前结合当前政府在船舶电动领域的推广情况和内河、湖泊区域的环保要求来看,未来一段时间内船舶电动化尤其是纯电动船将主要在内河水域、湖泊等相对封闭水域获得较大发展,主要集中在沿江沿海城市渡船、观光船、内河 (湖)货船、港口拖船等市场 。且这些船舶吨位多集中在 2000 吨以内的船舶类锂电池在汽车、电脑等方面已有大量的应用,但船舶市场应用相对较少。目前,大容量电池储能系统、电池管理系统等关键技术已有了重大突破,而且各国政府环保政策等外 部因素的推动,也为船舶电池应用的发展提供了强有力的后盾。船舶的锂电池应用应该以此为契机,进行发展及推广, 以满足日益严格的环保要求。  八、行业龙头锂电池公司介绍  1. 宁德时代  宁德时代新能源科技股份有限公司成立于2011年,是国内率先具备国际竞争力的动力电池制造商之一,专注于新能源汽车动力电池系统、储能系统的研发、生产和销售,致力于为全球新能源应用提供一流解决方案,核心技术包括在动力和储能电池领域,材料、电芯、电池系统、电池回收二次利用等全产业链研发及制造能力。2017年该公司动力锂电池出货量全球遥遥领先,达到11.84GWh。已与国内多家主流车企建立合作关系,并成功在全球市场上占据一席之地,也成为国内率先进入国际顶尖车企供应链的锂离子动力电池制造厂商。  2. 比亚迪  比亚迪业务布局涵盖电子、汽车、新能源和轨道交通等领域,从能源的获取、存储,再到应用, 全方位构建零排放的新能源整体解决方案。在新能源领域,比亚迪拥有电池、太阳能、储能等新能源产品及完整的产业链,产品遍及美国、德国、日本、瑞士、加拿大和澳大利亚等新能源发达市场和新兴市场。  3. 亿纬锂能  惠州亿纬锂能股份有限公司(简称:亿纬锂能)成立于2001年,于2009年在深圳创业板首批上市,历经21年快速发展,已成为具有全球竞争力的锂电池平台公司,同时拥有消费电池和动力电池核心技术和全面解决方案,产品广泛应用于物联网、能源互联网领域。  4. 国轩高科  国轩高科股份有限公司于1995年01月23日,公司经营范围包括锂离子电池及其材料、电池、电机及整车控制系统的研发等。2019年10月22日,“2019全球新能源企业500强榜单”发布,国轩高科股份有限公司位列第185位  5. 鹏辉能源  鹏辉能源(深圳创业板,股票代码300438)成立于2001年,注册资本4.2亿元人民币,鹏辉是一家20余年来一直专注于锂电池生产制造与研发的高新技术企业。公司业务范围已覆盖数码消费类电池、新能源汽车动力电池、储能电池以及轻型动力电池、电动工具电池等众多领域,全面实现了新能源产业链的完美覆盖,并率先实现规模化生产,拥有自主知识产权,主要技术指标处于国内、国际先进水平。  6. 中航锂电  中航锂电成立于2007年,是由中国航空工业集团公司、中国空空导弹研究院、四川成飞集成科技股份有限公司、中航投资控股有限公司、航建航空产业股权投资(天津)有限公司、江西洪都航空工业股份有限公司、洛阳兴航投资有限责任公司共7家单位,共同投资建设的专业从事锂离子动力电池、电源管理系统研发与生产的高科技公司,是一家拥有先进管理、技术、制造能力的现代企业。公司位于河南省洛阳市国家高新技术开发区,专业从事锂离子动力电池、电源管理系统的研发和生产,是国内领先的生产100AH以上高倍率、长寿命、大容量锂离子动力电池制造专业公司,是承担国家863重大专项“大容量磷酸铁锂动力电池及动力模块技术开发”的单位。

作者: 刘吉波 详情
description
年产7万吨!宁德厦钨锂离子电池正极材料项目预计9月投产

3月5日下午,在宁德厦钨7万吨锂离子电池正极材料(CD车间)项目施工现场,四百余名工人各司其职,分布在各楼层进行施工,有序推进项目建设。  该项目主管介绍,目前车间C以及CD宿舍楼已封顶,车间D计划3月底完成封顶;车间C第一台设备预计7月份进入安装,9月份完成安装调试投入生产。  据了解,该项目为福建省在建重点项目,位于东侨工业集中区工业路西侧、河墘路南侧,总投资24.45亿元。共分三期建设,一期主要建设CD两栋车间和配套设施,同时在车间C建设4条锂离子电池正极材料生产线;二期主要在车间C建设4条生产线;三期主要在车间D建设8条生产线,预计2026年8月竣工。项目建成投产后,预计可年产7万吨锂离子正极材料。

作者: 中国·蓄电池网 详情
description
锂电池“俏”当更争春

2023年,新能源汽车、锂电池、光伏产品合计出口金额1.06万亿元,首次突破万亿元大关,增长29.9%。  具体到锂电池,据统计,2023年我国锂电池累计出口超过150吉瓦,同比增长超60%。锂电池出口的持续增长,为我国在日益复杂的外部环境下实现外贸促稳提质提供了有“锂”支撑。锂电走俏原因何在  厦门大学中国能源经济研究中心教授孙传旺在接受记者采访时表示,锂电走俏主要有三方面因素:“第一,市场利好因素叠加。欧美主流市场与亚非新兴市场并起,海外新能源汽车和新型储能高景气度带动锂动力电池和锂储能电池需求渐进放量。第二,成本质量优势显著。中国已形成涵盖锂矿开采冶炼、电池制备应用、废料循环再生的完备产业链条,上下游前后配套、资源整合、供应保障能力较强,规模经济、降本提质效能不断释放,有效提升了品牌认可度和市场竞争力。第三,关键技术实力强劲。国内龙头企业核心技术研发能力稳步提升,磷酸铁锂与三元锂电技术在能量密度与使用寿命指标上均占优,充分强健锂电产业发展韧性与自主可控能力。”  2023年12月,工信部科技司印发《锂离子电池综合标准化体系建设指南(2023版)》(征求意见稿)(以下简称《指南》)。《指南》显示,锂离子电池是支撑新型智能终端、电动交通工具、新能源储能等产业发展的重要电子基础产品。  《指南》指出,按应用领域划分,锂离子电池主要包括消费型锂离子电池、动力型锂离子电池、储能型锂离子电池。其中,消费型锂离子电池是为手机、笔记本电脑、可穿戴设备、无人机等电子产品提供能量;动力型锂离子电池是为电动汽车、电动自行车、电动飞机、电动船舶等电动装置提供能量;储能型锂离子电池则服务于新能源储能、工商业储能、家用储能、应急储能等领域。  不难看出,便携式电子设备的普及应用、全球电动汽车市场的迅速崛起,以及储能需求的与日俱增对锂离子电池发展形成了强大助推。  当然,也离不开中国制造商在锂电池领域的竞争优势。《指南》显示,在产业界共同努力下,我国已发展成为全球最大的锂电池生产国,建成了从上游关键材料到电芯制造、电池组装、设备制造的完备体系。另中国汽车工业协会披露的数据显示,中国申请的动力电池专利占据了全球的74%。  《指南》明确,锂离子电池综合标准化技术体系主要包括基础通用、材料与部件、制造与检测、电池产品、回收利用、绿色低碳6大类、25个小类。  《指南》同时要求,到2028年,锂离子电池标准的技术水平达到国际先进水平,基本实现产业基础通用标准和重点产品标准全覆盖。锂电“重镇”的探索实践  提及锂电池生产企业,人们第一时间就会想到龙头企业宁德时代,而宁德时代总部就坐落于我国福建。与此同时,福建还有中创新航、海辰储能等动力储能头部企业。  据厦门海关统计,2023年福建锂电池出口1287.5亿元,同比增长49.5%,创历史新高,居全国首位。其中,对共建“一带一路”国家出口353亿元,增长80.3%。对韩国、日本、墨西哥分别出口80亿元、24.1亿元、8.3亿元,分别增长108.7%、379%、198.7%。  如此看来,讲述锂电池“出海”的故事,福建颇具发言权。  2023年8月16日,宁德时代发布了全球首款采用磷酸铁锂材料并可实现大规模量产的4C超充电池——神行超充电池,实现“充电10分钟,续航400公里”的超快充速度,并达到700公里以上的续航里程。  宁德时代科士达科技有限公司申请的“时代科士达”商标也获得中国海关总署知识产权保护备案。该公司主要从事储能装置及管理系统研发、锂电池制造等,产品出口荷兰、德国等地。通过此次海关知识产权保护备案核准,该公司产品将更具市场竞争力。  记者从福建省发展改革委获悉,针对锂电池上游产业规模偏小、产能结构不合理等问题,福建从全省的角度整体布局,统一规划,根据产业链不同环节的需求,发挥不同区域的优势。比如,厦门重点聚焦锂电池终端产品;南平、三明、龙岩等山区发挥石墨、氟新材料等资源禀赋优势,布局正负极材料、电解液生产基地;福州、漳州、泉州等沿海地区依托石化基础,围绕隔膜、电解液、壳体等,打造一批特色制造基地……  鉴于货物通关速度和生产交付能力逐步成为企业抢占海外市场的关键,根据锂电池产品出口的实际需求,厦门海关采取“一对一”方式建立健全企业协调员制度,持续做好锂电池行业出口数据分析研判,帮助企业掌握锂电池等进出口危险货物检验依据、法律法规、注意事项及申报流程。  1月10日,福建省人民政府公布《关于支持宁德市开发三都澳建设新能源新材料产业核心区的意见》,明确提出以宁德时代等企业为龙头,在动力电池国家先进制造业集群基础上,建设全球最大的消费类电池、动力电池和储能电池生产研发基地,争创国家级战略性新兴产业集群,建设集聚两岸资源要素、具有全球竞争力的先进制造业集群,打造世界“锂电之都”。蓄力发展的方向建议  事实上,外贸“新三样”新能源汽车、锂电池、光伏产品样样离不开锂,可谓“有‘锂’走遍天下”。  2023年8月,工信部、国家发展改革委、财政部等七部门联合印发的《有色金属行业稳增长工作方案》要求,针对铜、铝、镍、锂、铂族金属等紧缺战略性矿产,加大国内勘查开发力度,制定锂等重点资源开发和产业发展总体方案。  1月17日,记者从自然资源部获悉,我国在四川雅江探获锂资源近百万吨,这是亚洲迄今探明最大规模伟晶岩型单体锂矿。  近年来,我国锂矿等稀有金属找矿工作在川西、昆仑、阿尔金、幕阜山、喜马拉雅等成矿带实现重大突破,锂矿增储取得良好进展。同时,我国锂辉石矿、锂云母矿分布范围广,全国有1500多个盐湖,通过加大锂矿区块出让力度,可进一步挖掘锂矿找矿潜力;我国部分锂矿探矿权勘查程度较低,通过进一步加强地质勘查工作,锂矿增储空间较大。  谈及产业链上游,卓创资讯锂行业分析师韩敏华告诉记者,2023年上游原料碳酸锂价格下跌,正极材料、电解质价格跟跌,锂电池成本有所下降。  “电池级碳酸锂价格累计下跌约40万元/吨,折合锂电池成本下跌0.24元/瓦时左右。预计2024年碳酸锂价格低位震荡,锂电池生产成本或维持窄幅波动状态。”韩敏华说。  在中国化学与物理电源行业协会秘书长王泽深看来,我国锂电产业发展仍然存在资源供给保障压力大、产能利用率退坡、投融资热度退潮、前沿电池技术创新各国竞争激烈、产业链价格集体下滑、全产业链良性发展待修复、“出海”安全风险考虑不足等问题。  孙传旺指出:“锂电池出口尚面临不少挑战。一方面,我国锂电产业面临供需波动错配和资本过度投入引致的结构性产能过剩与周期性盈利风险,亟待拓展海外市场进行去库存、优产能。另一方面,欧盟碳边境调节机制、《新电池法》,美国《通货膨胀削减法案》等相继实施,在电池护照建立、资源回收利用及碳足迹认证等方面对锂电产品‘出海’形成多重掣肘,中国锂电出口企业承接订单、扩增市场份额阻力增加。”

作者: 曲艺 详情
description
年产6万吨锂电池负极材料生产线项目落子四川雅安

2月29日,四川省雅安市芦山县年产6万吨锂电池负极材料高温提纯生产线建设项目签约仪式举行。  据了解,年产6万吨锂电池负极材料高温提纯生产线建设项目,“含绿量”高、“含新量”高、“含金量”高,符合芦山锂电新材料产业发展方向,建成后也有利于助推芦山加快优化产业结构,为县域经济高质量发展提供强劲动力,为推动构建现代化产业体系,进一步夯实芦山工业产业发展提供强劲动力支撑。  据悉,年产6万吨锂电池负极材料高温提纯生产线建设项目建成投产后,芦山锂电池负极材料产业将成为国内工序最全的一体化项目,同时依托雅安富集、零碳的水电资源优势,将成为国内最具成本竞争力的锂电池负极材料制造基地,成为芦山大力发展经济的靓丽窗口与名片。

作者: 中国·蓄电池网 详情
description
年产20万吨锂离子电池正极材料生产线项目开工

2月29日上午,甘肃省委省政府及兰州市委市政府相继举行2024年一季度重大项目集中开工仪式。  本次新区集中开工项目38个,总投资268亿元,年度计划投资103亿元;其中,产业项目27个,总投资230亿元,年度计划投资81亿元。    开工仪式现场,甘肃金麟年产20万吨磷酸系锂离子电池正极材料生产线建设项目正式动工建设。该项目总投资30亿元,年度计划投资5亿元,建成后预计实现年销售收入106亿元、税收2.2亿元,将有力促进新区锂离子电池产业聚链发展。

作者: 中国·蓄电池网 详情
description
钠离子电池,分庭抗“锂”靠什么?

近来,随着钠离子电池“上车”的消息频出,钠离子电池产业化落地更加明朗。  2023年12月27日,全球首款搭载钠离子电池的电动汽车江淮钇正式下线,新车已于2024年1月5日开启批量交付。该车型定位于A00级微型电动车,目前售价5.99万起。据悉,江淮钇搭载的是中科海钠科技有限公司供应的独创的钠离子圆柱电芯,该电池具有蜂窝电池结构,具备“永不自燃”的安全特性。  2023年12月28日,江铃集团与孚能科技合作推出的首款钠离子电池纯电A00级车型江铃易至EV3(青春版)也正式下线。  在江淮和江铃之外,奇瑞、比亚迪等电动四轮车企和淮海等电动三轮车企都有清晰的钠离子电池上车计划,或者已经向中机车辆技术服务中心申报了相关车型;雅迪、台铃、新日等电动两轮车企则推出了搭载钠离子电池的车型。这些企业成为钠离子电池产业的助推者。  对此,第三方电池行业研究智库、真锂研究创始人墨柯表示,钠离子电池技术成熟后,势必会侵分部分铅酸电池及磷酸铁锂电池的市场。  不过,这将是一个漫长且曲折的过程。2021年,钠离子电池因锂价疯涨而迅速崛起,但随着锂价归位,钠离子电池的成本优势将不再突出。钠资源何以成为风口?  钠离子电池最早引起关注始于2021年动力电池巨头宁德时代的突然入场。  2021年7月29日,宁德时代对外发布了其第一代钠离子电池,宣称其电芯单体能量密度达到160瓦时/千克,为目前全球最高水平。这种电池在常温下充电15分钟电量可达80%;在零下20摄氏度的低温环境下,仍然有90%以上的放电保持率;系统集成效率可达80%以上。  2021年9月16日,宁德时代董事长助理孟祥峰曾透露,2022年宁德时代将有一条钠离子电池生产线投产运行。由此,宁德时代彻底引爆了中国钠离子电池产业的创新热潮。此前,中国做钠离子电池创业的公司屈指可数,随着宁德时代的抛砖引玉,钠离子电池创业公司便如雨后春笋般涌现。  其实,钠离子电池在风口“起飞”,离不开两个关键因素,其一是钠资源量大且易得。从储量来看,钠资源在全球的陆地或海洋中均有广泛分布。资料显示,钠资源在地壳中的储量高达2.75%的丰度,是锂资源的420倍。我国的矿石、盐湖、海水中均有钠资源的分布,相较仅存在于盐湖卤水或矿石中的锂资源更易得。其二是锂资源价格“过山车”式的涨跌幅度让业内叫苦不迭。以电池级碳酸锂产品为例,从2020年年底到2022年11月,该品类的价格经历了从最初的几万元/吨上涨到最高接近60万元/吨。而在2023年,碳酸锂的价格全年跌幅超过80%,这让电池企业的成本压力陡增。  基于这两点,钠离子电池产业迅速升温。在短短两年多时间内,国内的钠离子电池创业公司已达100多家,以至于有业内人士称:“2021年下半年之后,几乎每周都有一家钠离子电池公司诞生。”  据高工锂电统计,2023年至2025年,钠离子电池企业有效产能将分别达到19吉瓦时、25吉瓦时和60吉瓦时。  能在短时间内做到从中试到量产上车,与钠离子电池的独特产品性能分不开。相较锂离子电池,钠离子电池具备五大优势。第一,钠离子电池具有优异的低温性能,能够弥补目前锂离子电池低温特性差导致冬天续航里程衰减的缺点。第二,虽然钠离子电池目前能量密度略低,是磷酸铁锂电池的80%左右,但其能量密度提升速度较快,未来2年可提升至160~180瓦时/千克,接近磷酸铁锂电池,未来5年更是有望达到200瓦时/千克,成本优势将进一步突出。第三,相较锂离子,钠离子的电导率更高,快充性能更强,可以大幅提高充电速度。第四,钠离子电池可以完全放电至0伏,可以0伏存储和运输,提高了运输的安全性。第五,钠离子电池在使用过程中的电压曲线更具可测性,能够更加精确地估算整车剩余里程。  从目前上车的电动汽车车型来看,不管是已经量产的车型,还是在规划中即将量产的车型,基本以微型车为主。  依据汽车的轴距、排量、重量等参数可以将汽车划分为A、B、C、D、E、F级车,字母顺序越靠后,该级别车的轴距越长、排量和重量越大,豪华程度也不断提高。其中A级车又可以分为A00级、A0级和A级三类,前两类车都属于紧凑型的近距离代步车,对车的续航里程没有太高要求,所以很适合采用能量密度相对较低的钠离子电池。例如,近期江淮下线的钠离子电池花仙子车型续航里程为252千米,江铃下线的江铃易至EV3(青春版)车型续航里程为251千米;再如搭载宁德时代钠离子电池的奇瑞QQ“冰淇淋”车型,其续航里程预计为120千米或170千米。  此外,钠离子电池的高安全性和低温性能,在丰富多样的储能市场有望占有一席之地,成为与磷酸铁锂齐头并进的主流技术路线,但目前钠离子电池的循环寿命限制了其在储能行业的推广。分庭抗“锂”靠什么?  尽管钠离子电池上车已崭露头角,但这并不意味着钠离子电池短期内可以跟磷酸铁锂“硬钢”。  从发展阶段来看,钠离子电池行业还处于起步阶段。中国工程院院士陈立泉公开表示,钠离子电池的成本有望比磷酸铁锂电池低20%以上,但这需要完善产业链、提高技术成熟度以及实现规模效应。  伊维经济研究院研究部总经理吴辉认为,钠离子电池产业化要满足三个条件:首先,技术参数指标如能量密度、循环寿命、安全性、低温性能和倍率性能必须达到要求,并且可控制致命缺陷;其次,需要从中试线转向量产线,并进行规模化建设,同时展示下游示范应用;最后,通过培养产业链上下游来降低物料成本,并利用规模效应和设备自动化来降低制造成本。  根据吴辉的调研,目前钠离子电池产业主要为中试线,并未实现真正意义上的大规模量产,0.7元/瓦时的成本依然较高,相较磷酸铁锂电池仍不具备优势。  此外,因价格而略胜一筹的钠离子电池也在2023年迎来锂价暴跌这记“重拳”。  2021年,钠离子电池的骤然火爆源于锂资源的紧缺且价格暴涨,当年电池级碳酸锂价格从几万元/吨上涨到了最高接近60万/吨;如今电池级碳酸锂的价格已相对稳定,维持在10万元/吨左右。  据生意社商品行情分析系统数据,截至2023年12月31日,工业级碳酸锂国内混合均价为9.4万元/吨,与2023年1月1日均价50.4万元/吨相比下降了81.35%;而2023年12月31日国内电池级碳酸锂混合均价为10.3万元/吨,与2023年1月1日的52.5万元/吨均价相比下降了80.38%。  上海钢联分析师郑晓强认为, 2024年碳酸锂市场会围绕下游企业消化库存,预计碳酸锂价格会在8万元/吨~12万元/吨进行宽幅震荡。这意味着钠离子电池降本的速度远赶不上锂离子电池降本的速度,钠离子电池的成本优势就会降低甚至消失。  在2023年4月召开的高工钠电峰会上,浙江青钠董事长王子煊算了这样一笔账:碳酸锂价格为20万元/吨时,钠离子电池的边际成本领先约24%;碳酸锂价格为10万元/吨时,钠离子电池的边际成本领先约12%;若碳酸锂价格回归到5万元/吨,钠离子电池边际成本仅领先约5%。  与此同时,产业界对钠离子电池的高预期并没有实现。2022年,宁德时代研究院副院长黄起森公开表示,在乘用车应用方面,钠离子电池普遍可以满足续航400千米以下的车型需求,通过AB电池系统集成技术,有望使钠离子电池应用扩展到500千米续航车型,这一续航车型会面向65%的市场,应用前景非常广阔。同时,宁德时代正在推进钠离子电池在2023年实现产业化。  但这显然是一个过于乐观的预期。无论是宁德时代未来适配的奇瑞车型,还是头部创业公司中科海钠等已经适配的车型,车的续航里程都没超过260千米。这也说明钠离子电池能量密度的提升,并未如预期那样迅速。  2023年,宁德时代并没有实现钠离子电池的产业化,但钠离子电池长寿命、宽温区、高倍率、高安全、低成本、可与锂离子电池共线等优点仍被业界看好。在2023高工钠电产业峰会上,易事特董事长何佳认为,钠离子电池和锂离子电池会长期共存,只是在不同阶段和应用中分工会有所不同。在某些领域中,锂电池是必须使用的,而在其他领域则可以采用钠离子电池。凭借其多项优势,钠离子电池有望成为铅酸电池的替代品,以及锂离子电池的重要补充。

作者: 袁素 详情
description
锂电寿命翻倍!新型“凝胶电解质”将电导率提高33% 还无安全隐患

据报道,一组来自韩国的研究人员近期成功开发出了一种不易燃的凝胶聚合物电解质(GPE),有望通过降低热失控和火灾事故的风险,彻底改变锂离子电池(LIBs)的安全性。  在过去,LIBs的潜在可燃性引起了人们的极大关注,特别是在电动汽车中。为了解决这一关键问题,由韩国国立蔚山科学技术研究院(简称UNIST)领导的研究团队成功开发了一种开创性的不易燃聚合物半固态电解质,为减轻电池火灾提供了一种有希望的解决方案。  传统上,不可燃电解质在很大程度上依赖于加入阻燃添加剂或具有极高沸点的溶剂。然而,这些方法往往导致离子电导率显著降低,从而影响电解质的整体性能。  在上述突破性的研究中,研究小组在电解质中加入了微量的聚合物,创造了半固态电解质。与现有的液体电解质相比,这种新方法将锂离子的电导率显著提高了33%。  此外,采用这种不可燃半固态电解质的袋式电池的循环寿命提高了110%,有效地防止了固体-电解质间相(SEI)层形成和运行过程中不必要的电解质反应。最新研究结果已于近期发表在了ACS(美国化学学会)旗下《ACS Energy Letters》杂志上。  这种创新电解质的关键优势在于其卓越的性能和不可燃性。聚合物半固态电解质通过抑制燃烧过程中与燃料化合物的自由基链反应,有效抑制电池火灾的发生。研究小组通过定量分析其稳定和抑制自由基的能力,证明了所开发聚合物的卓越性。  UNIST能源与化学工程学院教授Jihong Jeong强调说:“电池内部聚合材料与挥发性溶剂之间的相互作用使我们能够有效地抑制自由基链反应。通过电化学量化,这一突破将极大地有助于理解不可燃电解质的机理。”  据悉,科学家们通过各种实验进一步证实了电池本身的卓越安全性。该团队的综合方法包括将不易燃的半固态电解质应用于袋式电池,确保对电解质不燃性的评估扩展到实际电池应用中。  “使用不易燃的半固态电解质,可以直接纳入现有的电池组装过程,将加速未来更安全电池的商业化。”他们说。  该研究在国内申请了5项专利,在海外申请了2项专利,进一步凸显了这一成果的意义。此外,它还得到了韩国国家研究基金会(NRF)、科学和信息通信技术部(MSIT)、韩国产业技术评价研究院(KEIT)、韩国化学技术研究院和三星SDI(一家电池和电子材料制造商)的支持。

作者: 黄君芝 详情
description
工信部组织开展2023年铅蓄电池行业规范公告申报工作

工信微报消息,为贯彻落实《铅蓄电池行业规范条件(2015年本)》,促进我国铅蓄电池行业持续、健康、协调发展,根据《铅蓄电池行业规范公告管理办法(2015年本)》有关规定,工业和信息化部近日印发通知,组织开展2023年铅蓄电池行业规范公告申报工作。各省级工业和信息化主管部门负责组织本地区铅蓄电池企业申报工作,依据《铅蓄电池行业规范条件(2015本)》要求,对申请公告企业的申请材料进行初审,征询省级生态环境主管部门,提出相关初审意见,并填写在《申请书》的相应位置。

作者: 沈蓄所新闻中心 详情
description
100MW/1000MWh!天能股份助力打造世界最大铅炭储能电厂

“双碳”背景下,我国能源结构正在向以新能源为主体的新型电力系统转型,而储能是推动能源系统变革的重要技术路径之一。当前,储能市场的需求更加多样化,铅炭储能作为重要的新型储能技术,凭借灵活部署、受自然环境影响小、建设周期短、安全性高、放电功率大、成本低等优势,正稳定落地电源侧和用户侧储能场景。天能股份(688819)作为新能源电池行业佼佼者,是国内最早研发推广铅炭储能技术的企业之一。目前,天能参与建设的多个国内外铅炭储能电站均实现了一次投运、长期稳定的设计效果和示范效应。近日,浙江省分布式零碳智慧电厂推进现场会在浙江长兴和平镇举行。由国家电投携手天能股份共同建设的世界最大铅炭智慧电厂“和平共储”项目,引起业界广泛关注。“和平共储”项目是目前世界上规模最大的铅炭储能电厂,可以通过数字化智慧控制系统,聚合分布式能源、用户侧储能以及可调负荷等多种元素,实现平抑负荷波动、补充尖峰缺口、降低客户用能成本等功能,为当地电力保供以及电网灵活性和调节能力的提升贡献力量。天能股份为电站提供清洁、安全、高效的铅炭电池,助力其打造成为户用铅炭储能全球示范。“和平共储”项目装机容量规模为100MW/1000MWh,含铅炭电池约300万个,一次充满可存100万度电,以城镇居民每户用电量12.5度/日计算,可满足8万户居民一天的普通用电。作为百万度电级别的储能电站,“和平共储”项目一期工程所需电池容量相当于41.5万辆电动两轮车,整体就像是一个巨大的电能“水库”,能灵活提供削峰填谷、调峰调频等电力服务,助力地方能源保供及促进新能源消纳。项目全部建成后,年调峰电量超过3亿kWh,年产值可达2亿元。“和平共储”项目具备五大显著特点,其充分体现了天能股份铅炭电池在储能领域的技术优势与应用价值,具体表现为:安全指数高。天能股份供给的铅炭电池无易燃物,属于水系电池,是确保高安全性的基础。同时,项目电池单元采用液冷方式,散热更均匀,改善了电池运行环境,增强了安全性;设备寿命长。天能股份铅炭电池在铅酸电池的负极中添加特制的导电性多孔炭,解决了负极活性物质颗粒变大的问题,电池的寿命是传统铅酸电池寿命的两倍;经济性好。一方面,铅炭电池储能单位用电价格实惠,建设成本与运营度电成本都较低;另一方面,铅炭储能全生命周期环境负荷很低,电池正负极材料及电解液均可回收,且回收工艺简单、技术成熟,残值率高达45%;建设周期短。项目采用标准化设计、模块化建设,电池单元上下2层为一块“积木”,实现“搭积木式”快速拼接,并采用了“变流”+“升压”一体化设计。项目从开工到一期竣工仅耗时3个多月;资源整合能力强。项目利用数字化调控平台聚合各级分布式零碳电厂,具有巨大的发展市场和良好的发展前景。此外,该项目的成功并网,也实现了三大新突破:一是首次全方位多要素多场景展示国家电投套娃式多层级智慧控制系统架构和源网荷储一体化聚合;二是在浙江省首次实现储能资源的共享;三是实现了整村户用储能试点突破。铅炭储能在构建新型能源体系的转型趋势下,前景广阔,未来可期。天能股份将坚定在铅炭电池领域持续突破,实现技术与产品性能的全面升级,不断打造创新的电池产品与储能系统解决方案,为促进经济绿色增长、保护生态环境、调整能源结构、推动科技创新注入强大的动力,助力共创零碳未来。

作者: 记者 冯思婕 详情
description
瑞达集团瑞启年产400万千伏安时OPzV固态铅碳电池项目盛大开工!

2022年7月27日上午8点18分,瑞达集团瑞启年产400万千伏安时OPzV固态铅碳电池项目在湖南衡阳松木经开区盛大开工!随着云计算、大数据、物联网等高新技术的迅猛发展,“碳达峰、碳中和”成为国家战略目标,储能市场的未来前景广阔。为抢抓这一市场机遇,2022年6月,瑞达集团投资8亿元,在衡阳松木经开区建设瑞启新能源OPzV固态铅碳电池产业园,并于7月27日正式开工动土。该项目预计2023年初建成投产,达产后预计可实现年产值40亿元,实现年税收2亿元。该项目的开工建设,标志着瑞达集团在衡阳投资发展规划得进一步落实落地,也是助推瑞达集团在衡的高速发展,实现产业集群和原地倍增的重要体现。瑞启新能源OPzV固态铅碳电池产业园在双碳战略下储能电源市场将会迎来上万亿的风口,瑞达集团依托技术、产品和产业链优势,正在加快新型储能产业的布局和发展。瑞达集团计划5年内对储能专用OPzV固态铅碳电池投资200亿,全力打造双碳战略下OPzV固态铅碳电池头部企业,力争在十年内把衡阳瑞达打造成千亿储能电池生产基地,千亿储能电站集成基地,打造世界级的“双千亿安全新型储能之都”。瑞启新能源OPzV固态铅碳电池产业园的开工建设,正是瑞达集团储能战略布局稳步推进的重要一环。项目亮点:OPzV固态铅碳电池OPzV 纳米硅固态铅碳电池是瑞达于 2006 年成功设计开发的新型储能用环保硅铅固态电池;是国内首家成功开发并量产应用的硅铅固态电池。OPzV采用纳米级气相二氧化硅作为电解质,是百分百固态结构,没有液体不存在泄露,有效解决了电池热失控起火的安全问题;其正负极材料、隔板、电解质等材料均是防火防爆级别,不起火不爆炸,不会有安全隐患;旧电池可以回收再生利用,绿色环保,不会造成二次污染。相比传统铅酸电池、胶体电池、锂电池及其他化学能电池,硅铅固态电池有安全性高、寿命长、经济性好、资源循环利用等明显优势,解决了电化学储能电池的起火爆炸行业痛点。OPzV纳米硅固态铅碳电池应用场景广泛,特别是适用于中大型储能。广泛应用于工商业储能、发电侧储能、电网侧储能、数据中心(IDC储能)、核电站、机场、地铁等高安全要求的领域。OPzV固态铅碳电池储能优势安全维度材料安全:组成电池的正负极、隔板、电解质等材料是防火防爆级,在明火状态下,不起火不爆炸;系统由EMS智控管理:保证电池温升不超过40℃,不会热失控。环保维度材料环保,采用气相纳米二氧化硅电解质,无游离液体,与外界完全隔绝,对环境友好;制造过程,废水废气废渣等做到0排放。经济性维度度电成本低,寿命长;充放电效率94%以上;制造成本还有降低空间。资源维度铅矿资源丰富,提炼方便,价格低廉;退役电池可达到100%循环再生。(Li储量少,且属于消耗性资源;Co属于稀有金属。

作者: 沈阳蓄电池研究所新闻中心 详情
description
老树新花:纯铅、水平电池引领我国铅酸电池行业新动力

近年来,全球化学电池市场中,锂离子电池异军突起,化学电池的元老——铅酸电池的地位似乎岌岌可危。然而,相对于锂离子电池,铅酸电池仍然具有成本低、技术成熟、稳定可靠、安全性高、资源再利用性好等比较优势。7月8日,在上海有色网(SMM)和天能控股集团有限公司共同举办的第十七届国际铅锌峰会暨国际铅锌技术创新大会——铅行业市场与技术论坛上,与会的业内专家进一步介绍,最近一些年,我国铅酸电池行业多项新技术涌现,纯铅电池和水平电池等新型铅酸电池的制造工艺也不断成熟,应用领域继续扩大。看似已步入垂垂暮年的铅酸电池,实际仍然喷涌着勃勃生命力。铅酸电池新技术助力“碳中和”作为工业化最早的电池,铅酸电池自1859年发明至今已经有160多年的历史。铅酸电池的电极主要由铅及其氧化物制成,电解液是硫酸溶液。其在化学电池市场中份额最大、使用范围最广,特别是在起动和大型储能等应用领域,仍具有不可替代的地位。据天能控股集团中央研究院副院长郭志刚在论坛中介绍,目前,全球范围内来看,锂离子电池依托能量密度的先天优势,处于快速增长期;铅酸电池则处于高位平台期;而下一代电池技术如钠离子电池尚处于开发阶段。在此背景下,国内铅酸电池产量近两年来小幅下降,产量保持在200GWh/年,全球产量维持在400GWh/年。预计到2025年,全球锂离子电池的产能将是铅酸电池的3—4倍。不过,锂离子电池普遍存在着锂/钴/镍等原料成本高,锂电全周期的碳排放较高,安全性不稳定等缺陷。相较而言,铅酸电池在成本、稳定性、安全性、再生利用等方面存在优势。尽管如此,在锂离子电池迅猛的追赶势头下,铅酸电池确实面临着“不进则亡”的生存危机。在论坛中,郭志刚重点介绍了目前国内铅酸电池行业中新型的正极铅膏技术和真空化成技术。传统的铅酸电池正极铅膏(铅膏是铅酸蓄电池活性物质的母体)制作流程长,能耗高,正极和膏现场污染程度大,添加剂采用机械混合,成本也相对高昂。而新的“一步法正极配方复合技术”则是用特种铅制作粉,形成有用成分均匀分布的复合铅粉,和膏时只需加入水纤维和硫酸。“相对于常规的典型正极铅膏工艺,一步法的一致性更好,成本能够降低1000元/吨。”郭志刚介绍说。其次是真空化成技术。据了解,通常而言,电池在生产完成后,必须先进行化成和测试,然后才能安装到系统中。电池化成过程采用专门的电池化成设备对电池进行充电和放电,需要高精度电压和电流,以确保电池实现规定的使用寿命。只有在顺利通过测试之后,电池才可以进入市场。目前,电池化成是电池生产过程中的主要瓶颈之一。为了激活刚刚装配好的电池单元或电池组中的材料,需要花费长达20小时的时间进行充电放电循环。但这个过程必不可缺,因为它极大地影响着电池的使用寿命、质量和成本。据郭志刚介绍,采用常规的化成技术,电池化成时间长,耗用的电量多,集群内部温度均一性较差,温度不易控制。而真空化成技术的化成时间短——通常小于半天,化成电量少,极群内部温度均一性好,温度易控。通过这一技术,可以达到降本增效,节能减排的目的,并且提高电池化成效率,改善化成极板的均一性,提高电池寿命。此外,铅酸电池出现的新技术还包括了在正极板栅中使用冲网板栅;正极采用高密度铅膏、提高活性物质与板栅界面贴合性,在正极配方中优化添加剂(加入锡锑铋铅丹/低氧化度铅丹);在电池隔板中优化粗细纤维比例,从而提高回弹性等。纯铅电池技术进一步成熟纯铅电池最早由美国艾诺斯电池集团下属的Gates公司于1973年研发成功。通过近50年的不断研发、改进,纯铅电池的制造技术也得到了长足发展。从电池的电化学性能、结构设计、电池材料(包括外壳材料)、制造工艺及控制等方面来看,纯铅电池都体现了铅酸电池的极高水平。所谓纯铅电池,是指电池的正负极板栅(板栅是电极的集电骨架,起传导、汇集电流并使电流分布均匀的作用,是活性物质的载体)和活性物质均采用高纯度铅(99.999%),电池通过连续铸带、连续冲网等特殊工艺制造而成。在此次论坛中,据理士国际技术有限公司技术总裁陈军介绍,传统铅酸电池的正负极板栅以铅为主要原料,但在铸造时都要加入其它金属 ,如铅钙合金 、铅钙锡合金、低锑合金等,形成合金板栅。但合金金属的加入,导致电池极板在使用过程中腐蚀加快,电池的自放电大,使用过程中失水较快,电池内阻较大,这是传统铅酸电池固有的缺陷。虽然各蓄电池厂家对铅酸电池进行技术更新,设计改造,但传统铅酸电池依然存在高温下环境下的使用寿命较短、浮充使用和循环使用难以同时兼顾、充电时间较长等问题。例如,新疆金风科技有限公司某内部人员此前在一份报告中指出,我国的风力发电机组变桨系统的备用电源多采用普通铅酸蓄电池。在环境温度在40—50度时,铅酸蓄电池的浮充寿命只有不足1年的时间,而目前我国大部分的风力发电机组都在“三北“地区,夏季高温炎热,机舱平均运行在40度左右,极大降低了铅酸蓄电池的浮充寿命。据陈军介绍,相较于普通铅酸电池,纯铅电池拥有四大优势,首先,纯铅电池的适用温度范围广(-40℃至+80℃),特别适应于极恶劣的环境;其次,由于纯铅电池的极板超薄(约1mm,传统电池极板厚度约为3mm),在同一尺寸壳体内,可以装入更多的极板,大大增加了电池内部的反应面积,从而提高了电池的化学反应效率,并且降低了电池内阻,具有更高的能量密度。再次,纯铅电池具有快速充电接受能力,充电3小时电池容量达到90%以上(一般GEL胶体电池需要8-10小时);最后,由于纯铅电池采用超薄多极板设计,在短时间放电能力上(如城市轨道交通行业30分钟至2小时放电需求),比传统铅酸电池的放电能力提高40%左右。此外,纯铅电池纯铅板栅的腐蚀速率,仅为常规重力浇铸铅钙合金板栅的约1/6,耐腐蚀性能更好。同时由于电池内部杂质少,失水率低,自放电小,每月自放电率小于2%,因此,电池有较长的储藏寿命,无需再充电时间可达两年。不过,业内人士向澎湃新闻(www.thepaper.cn)记者指出,由于纯铅电池的正负极板非常“柔软”,强度不够,给极板制造带来了很大的困难,另外极板的叠加和装配也很难实施。因此早期的纯铅电池采用了卷绕式结构设计,容量最大只有100AH。随着智能制造技术的快速发展,纯铅电池的极板制造和装配技术已得到有效解决,电池的单体容量已达到600AH。据了解,纯铅电池的优良特性,使其逐步受到国内通讯行业和城市轨道交通行业的关注,部分城市已开始推广使用。水平电池实现传统电池结构突破相较于普通铅酸电池乃至纯铅电池,水平电池采用了更新型的材料,在电池结构上也实现了颠覆性的突破。易德维能源科技有限公司总经理张正东向澎湃新闻(www.thepaper.cn)记者介绍说,1980年,美国军方为水平电池研究立项,开启了铅酸电池革命的序幕。上世纪90年代末,美国Electro Source公司在全球率先研发出了水平电池的商业技术。一方面,水平电池使用了新材料。以易德维公司的水平电池为例,其采用了复合纯铅板栅,板栅内部核心是航天级高强度玻璃纤维,由多极耳浇铸而成,抗拉强度可达100546 Kgf/cm2,纤维外层包覆纯铅层(铅中仅掺入约10%的锡,以增强材料的强度),在2000MPa冷挤压成型。而后,这些复合铅丝编织成为板栅结构,涂抹活性物质成为电池极板。这种编织结构使得活性物质接触面积大,电流密度100%均匀。据易德维能源科技公司内部估测,这种新型复合纯铅板栅的耐腐蚀性是普通重力浇铸板栅的9倍。不仅如此,跟普通的电池通过极耳、汇流排和跨桥连接不同,水平电池基于双极性极板技术,采用特殊极板堆叠方式,实现电池内部的立体串并联,极大缩短了电流的导电路径,从而大幅降低了电池内阻。较普通电池,水平电池内阻降低了70%左右。同时,电池的正负极活性物质同时涂敷在一块极板上,更利于大电流的快速充放电。此外,与传统铅酸电池和纯铅电池的垂直极板放置不同,水平电池采用极板水平放置,能有效地避免活性物质脱落和电解液分层,促进氧复合,有效提升电池的充电效率和循环寿命。基于这些突破性的设计,水平电池具有诸多优越性能。据张正东介绍,快充是其一大优势。相较于普通铅酸电池,水平电池具有极速快充能力,3C电流(即放电电流是电池标称容量的3倍)下只需75分钟就能充满,充电20分钟电池容量能达80%以上。低温环境下水平电池的表现性能也很好。在-50℃的环境中电池能够一键起动,-40℃时电池的放电容量还可达40%以上,超低温放电能力是普通产品的2倍。这一方面是由于电池的电阻低,另一方面是由于水平电池采用贫液设计,即电解液呈固态状吸附于隔板,不具有流动性,相较而言,普通电池的液态电解液更容易冻住。特别地,水平电池还具有耐破坏、抗振动的优点。由于水平电池的电解液呈固态状,外壳即使破损也无液体泄露,而在内部单体间,数百根铅丝构成了立体串联并联网络,任何破坏均不能将其连接完全损坏。基于这样的优异性能,水平电池可适用于重卡,船舶,改装车,游艇,观光车,军用车辆,特种车辆,工业机器人等领域,“未来在储能领域,凭借其稳定、安全性,水平电池也能发挥重要作用。”张正东说。目前,易维德公司的水平电池产品在国内外都有成功使用的案例。据张正东介绍,2020年9月,公司的水平电池已使用在挪威位于北极圈内的一座灯塔上。这座灯塔长期处于零下20度的高寒环境中,传统铅酸电池每周都需要直升机更换,而锂电池也不能满足其要求,易维德公司的水平电池在灯塔上安装后已经连续使用一年半,电池状态良好。而在浙江省安吉县的山区,水平电池也一显身手。安吉地区坡多路陡,当地环卫车原本使用的是水电池,需要经常加水维护,成本高且麻烦,还存在酸液溢出、腐蚀车架的问题,电池通常在使用至8个月后,环卫车就会出现爬坡无力,甚至遛坡的现象,充电时间也长。2020年10月,当地环卫车换上了水平电池,电池动力强劲,车辆爬坡压力缓解,电池能快速充电,从而节省了成本,提高了工作效率。不过,张正东向澎湃新闻记者(www.thepaper.cn)坦言,“水平电池仍然属于全新的产品,仍然处于研发改进的过程,产品还需要得到进一步的检验,并没有实现完全的量产。”目前,易维德公司的水平电池每天产量约为300只,产品类别包括了超级重卡电池,超级起动电池,船舶专用电池,高性能军用车辆专用电池等。而据了解,在国内,除了易德维能源科技有限公司外,传统铅酸电池的生产厂商如天能集团,超威集团也在进行水平电池的研发,但产品均未进入量产阶段。

作者: 沈阳蓄电池研究所新闻中心 详情
description
1.4万余吨废旧铅蓄电池的威力有多大?

在一年多的时间里,沈某等人共非法处置1.4万余吨废旧铅蓄电池,造成盐河水质严重污染。从2017年获悉案件线索,到2021年斩断犯罪链条,江苏省淮安市清江浦区检察院生态检察办案团队历时三年半,将一起刑事附带民事公益诉讼案办成了部门上下联动的精品案。当下,电动车已经成为人们出行的重要代步工具,它使用的是平均寿命约为两年的铅蓄电池,两年后,很少会有人留意这些废旧电池去了哪里,但在“有心人”眼中,这些“废品”却是价值惊人的宝贝。从2017年获悉案件线索,到2021年斩断犯罪链条,江苏省淮安市清江浦区检察院生态检察办案团队历时三年半,将一起刑事附带民事公益诉讼案办成了部门上下联动的精品案,引发社会各界广泛关注。七旬老人主动“自首”2017年夏,住在淮安盐河边的不少村民反映,空气中总有刺鼻的酸臭味,水面上还经常出现来历不明的黑色物体,盐河的水质被严重污染。了解到这一情况后,淮安市清江浦区检察院作为淮安市环境资源类案件集中管辖院,立即派出生态检察办案团队,提前介入案件,与公安机关一同调查核实污染源。最终,在一个隐蔽于偏远乡下的破旧工厂里,查获了一个紧邻盐河的无证拆解废旧铅蓄电池的小作坊,厂房有两个篮球场那么大,里面堆满了大大小小的电池和被拆解下来的零部件,地面流淌着黑褐色的酸臭液体。正当公安机关和检察机关准备调查幕后黑手时,一名姓曹的七旬老人主动前来投案。这不禁令人疑惑:“70多岁的外地老人,为什么不在家颐养天年,而要大老远跑到这里干违法的事?”职业敏感引起了办案团队的警觉,这里面可能另有隐情。办案团队通过引导公安机关侦查发现,老曹是来顶包的,真正的幕后黑手是沈某、侯某以及老曹的儿子曹某。原来,曾靠倒卖废旧铅蓄电池发家的沈某,无意间向侯某吐槽倒卖电池的生意越来越难做,侯某便给沈某支招——“如果把电池里面的铅炼出来,一吨能卖到一两万元,要比倒卖电池赚得多!”考察了侯某在山东投资的厂子后,沈某、侯某、曹某三人一拍即合,在淮安市淮阴区合伙干起了废旧铅蓄电池回收、拆解、冶炼、售卖的勾当。其中,沈某负责废旧铅蓄电池的收购以及各生产现场的管理,侯某负责联系从山东运送铅锭炼制炉,提供部分生产原料,曹某负责对外销售成品铅锭。很快,沈某等人就找来会计、现场负责人、工人、驾驶员等20余人,分别从事记账、称重、拆解、运输等工作。落网主犯拒不交代检察官经实地走访了解到,小作坊的工人都是从外地过来挣“快钱”的,流动频繁。在没有防护的环境中工作,不到一个星期,他们体内的血铅含量就能达到铅中毒标准的3倍。而在现场,电池拆解、冶炼过程中产生的液体被随意倾倒在地上,隔着老远就能闻到酸臭味,被腐蚀的土地寸草不生,旁边不到100米就是水源地。2017年11月,沈某等14人被检察机关批准逮捕。要想依法打击犯罪,当务之急是查清楚沈某等人到底处置了多少废旧铅蓄电池。然而,在检察官依法对沈某进行讯问时,沈某却拒不交代犯罪事实。主要犯罪嫌疑人拒绝交代、废旧铅蓄电池来源不明、炼出的铅锭又不知去向……正面出击受到阻碍,办案团队决定从侧面分头突破,一方面引导公安机关对犯罪嫌疑人的住所、手机、电脑等展开排查;另一方面以小作坊为切入点,反复勘查现场、走访调查。由于沈某先后在多个乡镇设置了7个隐蔽窝点,案件调查难度大。检察官们走访现场近20次,引导公安机关补充收集证据近千页,最终从仓库保管员的记账本、合伙人侯某家中搜查出的资产负债表以及几名会计的微信聊天记录中,找到了与电池重量有关的关键证据。经过办案团队分工配合,将不同账目录入表格,交叉比对时间有无重合,剔除重复数据,最终查明,在一年多的时间里,沈某等人共非法处置1.4万余吨废旧铅蓄电池,对外输送出价值近亿元的铅锭。经评估,涉案几个区域生态环境的修复费用近2000万元。2019年9月,清江浦区检察院对沈某等14人以涉嫌污染环境罪提起刑事附带民事公益诉讼。沈某等14人被法院分别判处六年至一年六个月不等有期徒刑,连带赔偿生态修复费用等1800万余元。“沈某等人污染环境案件是近年来淮安市检察机关在依法履职,深入打好污染防治攻坚战,保护绿水青山方面的一个成功典范。”观摩案件庭审后,全国人大代表、江苏沙钢集团淮钢特钢股份有限公司轧钢厂三轧车间主任杨庚豹这样评价。斩断遍布多省市的犯罪链条“沈某的拆解、冶炼团伙只是利益链条中的一环,其上游有电池供货商,下游有铅锭铅灰收购者、工人、会计、仓库管理员等。”办案团队负责人、该院副检察长张超运介绍。对此,办案团队推动公安机关继续倒查,随着关联案件越挖越深,案件事实也愈发令人触目惊心,这个犯罪链条的“足迹”竟然遍布了全国10多个省市。办案中,办案团队成员按照废旧铅蓄电池的来源、非法处置过程、铅锭铅灰和拆解物去向三条脉络,分别梳理各行为人的犯意、联络和分工。经多次公检法会商和检察官联席会议,统一司法办案尺度,准确认定行为性质。对明知他人用于废旧铅蓄电池拆解冶炼的电池回收、拆解物处置等人以污染环境罪提起公诉,对铅锭铅灰收购者则以掩饰、隐瞒犯罪所得罪追究刑事责任。2021年3月29日,涉案的最后一名被告人被判处刑罚。至此,历经三年半,这条非法回收、拆解、冶炼、销售犯罪链条上的68名不法分子,全部得到了法律严惩。至于小作坊里的那些工人,他们既是违法者,同时也是受害者。经过考虑,检察机关仅对有管理职责的少数人提起公诉,对那些没有实际参与投资、管理、分成的大多数人,在进行集中普法训诫后,不再追究刑事责任。此外,办案团队还撰写了案件专项报告,得到淮安市委的高度重视,并先后联合环保、交通、公安等九部门对870家废旧铅蓄电池相关企业开展集中整治,净化了行业风气。“现在难闻的气味没有了,河水也干净了,有时候还能看到鱼咧!”再次来到盐河边,村民这样告诉检察官。

作者: 沈阳蓄电池研究所新闻中心 详情
description
锂电池在船舶中的应用

【摘要】探讨了锂电池在船舶储能、船舶动力方面的应用前景,对锂电池在船舶中应用的政策、规范、应用现状和存在的问题进行了阐述,对锂电池的类型和磷酸铁锂电池应用于船舶的优势及主要应用场景进行了讨论,研究了锂电池的龙头企业状况,并对拓展锂电池在船舶中应用的可行性和意义进行了分析,提出了未来拓展的初步思路。  一、锂电池在船舶动力中的应用  目前船舶使用最多的动力系统是柴油机船舶动力系统,但柴油机动力系统存在着许多的问题。第一,柴油机使用的是重油或是不可再生能源,资源压力大,使用成本也极高。第二, 柴油机运行中产生的噪音、振动问题难以解决。第三,柴油机的废气废料排放问题极其严重,对环境造成的污染。  随着对环境污染、资源紧缺等问题越来越重视,航运业污染问题也受到越来越多人的关注。船舶是排放大户,近年来各国航运业积极行动,不断推动和拓展绿色船舶技术的应用。  虽然业界关注的船舶新能源种类众多,如LNG、甲醇、LPG、生物质燃料、太阳能、氢气、燃料电池、锂电池等,但真正能够实现零排放,并在海运业逐步推广且具初步市场规模的新能源动力,目前只有锂电池电动船舶。纯电池动力船舶主要适用于航线固定、航程短、补点便捷的场合,对于航线距离相对较长的场合,柴电混合动力则更能兼顾节能减排与航程适应性。  1. 锂电池在纯电动船舶的应用  相较传统的推进系统,电力推进系统具有经济性良好、操纵灵活、安全性高、振动小和可靠性高等特点,电力推进系统现广泛应用于渡轮、挖泥船、拖轮和大型邮轮等。随着电力电子技术快速发展以及能源危机日益加剧,电力推进替代传统的柴油机推进成为不可阻挡的趋势。  电力推进技术依靠其在机动性、可靠性、运行效率、布置灵活性、经济性、易于维护等方面的巨大优势,广泛应用于工程船、油船、豪华游船等船舶上。在世界各国都在追求可持续发展、倡导低碳经济的今天,其将成为未来绿色船舶的前进动力。  在国外,几个大的船舶电力推进生产厂商都有自己的电力推进系列产品,并已将其投入实际运行中,例如ABB公司的Azipod推进系统,J、Siemens公司与Schottel公司的SSP推进系统。然而,船舶电力推进一直面临着一个技术难题,即频繁的负载扰动给推进系统的性能带来了重大影响。一方面,海洋环境复杂多变,风、浪、流对负载的影响不可预知,带来的扰动也在不断变化;另一方面,某些工程船(破冰船、挖泥船、海上钻井平台等)在作业时除了受环境干扰以外,其负载功率需求还随工况要求等客观因素的变化而变化,会产生巨大的负载扰动。显然,这些负载扰动会给船舶电网带来巨大冲击,对船舶推进系统的性能有着巨大影响。解决该问题的一个办法是采用能量存储技术。储能单元可以提高系统的稳定性,在电力系统遇到扰动时,其可以瞬时吸收或释放能量,平复扰动给系统带来的影响,增强系统的稳定性。近年来,大容量存储技术飞速发展,几个大的储能单元生产商(如Corvus Energy公司和Maxwell公司)都在生产自己的大容量储能产品并将其投入到实际运行中。  2. 锂电池在混合动力船舶中的应用  混合动力船舶过去通常指的是柴−电混合动力船舶,但随着船舶新能源技术逐步得到推广,以太阳能、燃料电池LNG等为代表的新能源技术开始在船舶上应用,使混合动力船舶定义越来越广。混合动力船舶包含了以电能为中心的多种能量来源,其多样性赋予了船舶运行灵活、经济的优点,而不同能量来源只有通过管理,充分利用各自的特性、协调控制它们之间的流动,才能在保证船舶的功能性、安全性的同时,有效降低能耗、减少排放。  在混合动力船舶中,锂电池主要有两大作用,供能和储能。锂电池可以根据船舶不同的使用要求进行方案设计,主要有以下应用:  1)电力保留,防止船舶失电。  2)削峰填谷:可以在负荷最大的时候,通过锂电池短期供电;负荷较小的时候,电网给锂电池进行充电补充。  3)弥补发电机组的特性不足:可将突加的负荷转 移到电池组上承受,有效地规避了“闷车”风险。  4)作为电力直接对电网进行供电:船舶不配备柴油发电机,直接采用电池系统对船上的设备进行供电,推进系统采用电动机提供动力,就可以实现船舶“零排放”。  二、锂电池在船舶储能中的应用  在多数情况下,船舶电力推进系统都是内燃机驱动发电机组为系统供电。由于海洋环境复杂多变,负载是变化的,当负载偏离最佳负荷点时,燃油就会得不到充分燃烧,燃油的利用率随之大幅度下降,同时会产生大量的氮氧化物和硫氧化物,对环境造成污染。  能量存储技术是解决这一问题的办法之一。利用储能单元在系统轻载时将多余的能量储存起来,来防止该能量对电网的冲击。在系统过载时,储能单元释放能量来满足负载的需求。能量存储技术已经很好的应用于电动汽车行业。而大容量能量存储技术的发展,使得储能单元应用于船舶电力推进系统成为可能,利用储能单元来克服功率波动对船舶电力推进系统的影响将是未来船舶推进技术发展的新方向。  储能系统可增强汽轮机功率提升能力,提高汽轮机调速水平,改善电网质量,实现发电的平滑输出,从而增加了系统的稳定性和可靠性。同时,储能系统也能将多余的能源储存起来,一定程度上提高了船舶运行的经济性。另外,由于船舶所处环境较为恶劣,且长期远离陆地,遇险救援时效性较差,因此,对于保证安全的电力系统要求很高。储能系统作为电力系统最可靠的能源,是保护船舶安全的最后一道屏障。  根据储能载体区分,储能方式主要分为电化学储能、物理储能和电磁储能三种。其中电化学储能主要包括电池储能和超级电容器储能;物理储能主要包括抽水储能、高压空气储能和飞轮储能;电磁储能主要包括超导储能。  在各种储能方式中,抽水储能、压缩空气储能因为响应速度慢,不能满足船舶的要求。超导储能能量密度过低、成本过高且技术成熟度不高,实际运用中可靠性和经济性都不高,也不适合应用于船舶。船舶中主要应用的储能方式为电池储能、超级电容器储能和飞轮储能。超级电容器储能和飞轮储能两种储能方式都具有响应快、比功率高的特点。相比起来,超级电容器储能比功率更高,但比能量极低,放电时间极短,成本更高。  电池储能中,铅酸电池和锂电池是当前应用较为广泛的电池。两种电池均具有额定功率高,放电时间长的优点。相比起来,铅酸电池技术更为成熟,成本较低,安全性较高,但比能量远低于锂电池,且环保性很差。锂电池本身电池特性更为优越,但技术成熟度还不高,散热问题较为严重,安全性不足。用作动力源的锂电池,按电芯材料分类,主要有三元锂、锰酸锂、磷酸铁锂、钛酸锂等几种,目前主流应用的是三元锂电池和磷酸铁锂电池。三元锂电池能量密度最大,但是出于安全原因,在电池管理系统需要投入更多资金,一定程度上限制了三元锂电池在国内船舶的应用。磷酸铁锂电池技术己相当成熟,广泛应用在陆用交通、 太阳能和风力发电发电储能、电动工具等领域,大规模的生产也使电池价格回落到较为合理的空间。结合国内船舶实际和电池产业现况,磷酸铁锂电池在船舶领域发展较快。  三、锂电池在船舶中应用的政策和规范  1、政策基础  为了推进新能源在船舶产业领域的应用,国家和地方出台了一些针对锂电池在船舶领域应用的政策。国家层面,虽然没有专门针对电池动力船舶的鼓励政策,但相关政策可见于各文件中。  2018年 11月30日,交通运输部印发《船舶大气污染排放控制区实施方案》,鼓励船舶使用清洁能源、新能源、船载蓄电装置或尾气后处理等替代措施以满足船舶排放控制的要求。  2019年 1月 4日,生态环境部等 11部委联合印发《柴油货车污染治理攻坚行动计划》,鼓励淘汰使用20年以上内河航运船舶,依法强制报废超过使用年限的航运船舶,推广使用纯电动和天然气船舶。  2019年 9月,中共中央国务院印发实施《交通强国建设纲要》,特别强调加强新能源在船舶行业的应用研究,要求推广新能源、清洁能源等技术装备,提升新能源船舶设计建造能力,强化新能源等前沿关键科技的研发。  2020年 6月,交通运输部发布《内河航运发展纲要》提出:加大新能源、清洁能源推广应用力度,推广 LNG节能环保船舶,探索发展纯电力、清洁燃料等动力船舶。  地方层面,各地方政府出台的政策更具针对性,这些政策的发布与实施极大地推动了当地电池动力船舶产业的发展。如深圳市制定的《2018年“深圳蓝”可持续行动计划》、广州市制定的《广州港口船舶排放控制作战方案(2018-2020年)》、武汉市制定的东湖等封闭水域禁止运行燃油船舶的要求,以及湖北省即将出台的禁止封闭水域运行燃油船舶的规定等。  2、规范基础  电池动力船舶属于较新的船型,船舶及相关产品的设计尚处探索期,政策法规尚处于完善期,无论国际还是国内相应的法规都不够健全。  国际方面,纯电池动力船舶的相关标准分散在国际海事公约、检验法规、船级社规范和船舶及相关行业之中,但尚未形成体系。SOLAS公约规定了电源及发电机组的要求,但一直没有将纯电池动力引入到公约当中,成为制约国际航行电池动力船舶发展的一个重要因素。《国际海运危险货物规则》规范了电池组运输的要求。部分船级社针对电动船也发布了相关的指南和要求。国际电动委员会(IEC)发布了22项涉及船舶电气、蓄电池及燃料电池安全、性能、防爆领域的标准。这些标准在一定程度上满足了电池动力船舶的要求,但未形成系统和完善的应用规范。  国内方面,电池动力船舶的相关标准制定基本能够满足现阶段电池动力在船舶上的应用。国内标委会制定了与 IEC对口的相关行业标准 22项,能够为当前电动船舶的设计建造提供一定借鉴。2019年11月,中国船级社发布《纯电池动力船舶检验指南》。自 2011年起,交通运输部海事局组织开展了电池动力船舶技术规范的制定工作。并于 2019年 7月 23日发布《内河船舶法定检验技术规则(2019年修改通报)》,2019年 11月 13日发布《内河船舶法定检验技术规则(2019)》,针对内河船舶电气要求和磷酸铁锂电池的性能特点,制定了相应的技术要求。规则的出台,大大促进了船舶行业电动化的快速发展。另外,东疆海事局在内河电池动力船舶规范基础上,继续积极推进沿海电池动力船舶技术规范的制修订工作,磷酸铁锂电池在海船上的应用已纳入 2020年船舶技术修订重点工作。同时将加快推动研究制定船用锂离子电池基础通用性能和试验标准。  四、锂电池在船舶中的应用现状  电池动力船舶是目前国际上最新颖的船型之一,其电气化特点能够为下一代智能船的发展提供基础。其设计和建造并不是动力系统的简单替代,需要设计和建造理念的革新。对于设计和建造部门来讲都是巨大的挑战。其船舶系统及功能的配备、设备操作和船员技能的要求、作业环境对船舶的影响、事故和风险的预防处置等方面较常规动力船舶更为复杂。各船级社、海事部门等都处于研究起步阶段,相关研究和设计体系尚不完善。  1、产业现状  从全球范围看,电池动力船舶的应用正处于探索、示范期,运营经验不足。截止 2019年 5月底,全球电动船舶数量为155艘,其中包括营运船舶 75艘,拟建造船舶80艘,已实现1000KWh到 4000KWh之间较大容量电池动力船舶的应用。电池动力的选择上既有磷酸铁锂电池,也有三元锂电池。我国内河已建纯电池动力船舶 20余艘,在建及计划建造纯电池动力船舶 10余艘。2015年以前,我国电池动力船舶的应用仅限于 600KWh以下的小型船舶 ;2015年以后,使用的最大电池容量达到 3000KWh,且全为磷酸铁锂电池。我国电池行业发展相对成熟, 但是船用产品及其配套产业占据的市场份额较小,参与船用电池认证的企业较少,仍存在较大发展空间。电池动力船舶的核心部件是为推进电池及其配套的电池管理系统。在全球前十的电池制造商中,国产厂家占到五家。2020年第一季度国内动力电池装机量合计约 5.68GWh, 涉及的装机动力电池企业 51家,其中宁德时代、比亚迪、国轩高科、 亿纬锂能、中航锂电等是排名靠前的企业,主要装机产品是新能源汽 车。国内锂电池配套船舶作为动力源,必须经过中国船级社(CCS)的资质认证。截至 2019年10月,中国船级社已完成和正在进行的船用电池产品认证共 37项,其中 15项动力电池项目、5项电池管理系统项目已经完成审核工作。在电池管理系统方面,中国船舶重工集团公司第 712研究所、711研究所、704研究所已具备纯电池动力系统及整船解决方案的设计和供货能力,无锡赛思亿已具备船舶直流网电力推动系统、混合动力推进系统、试验站用电系统的供货能力,中车上海汉格已具备直流电力推进系统、交流电力推进系统、ESS节能系统的供货能力。  2、港口配套现状  港口配套设施特别是充电设施是限制电动船舶发展的因素之一。截至2018年底,我国已建成岸电 2400余套,这些设备使用中存在与船舶供电不匹配等诸多问题,并且不能直接为纯电池动力船舶进行充电,但是为电池动力船舶获取动力提供了较好的硬件基础。随着《船舶大气污染物排放控制区实施方案》的持续推进,特别是船用岸电使用方面政策的强制实施,全国岸电的配套规模和区域有望进一步扩大和提升。  五、锂电池在船舶应用中的问题  1、缺少统一规划  一是电池动力船舶推广缺少统一部署。在电池动力船舶的应用和推广中,锂电池生产企业、电力企 业、配套企业各自推进,缺少国家层面的宏观规划,技术研发、发展路径、推广模式缺少统一的规划和指导。目前,我国只有个别省市出台了电动船建设、改造补贴方案,如《深圳市绿色低碳港口建设补贴资金管理暂行办法实施细则》《广州港口船舶排放控制补贴资金实施方案》,积累了一定的经验。同时,由于电池动力船舶虽然使用成本低,但前期投入较多,电池动力船舶推进系统的造价一般是传统动力系统的 2.2至 2.5倍。由于电动船产业规模较小,国家对新建、改建电池动力船舶并未出台专门的补贴政策,在电价优惠、岸电规划方面缺少统一的部署。二是缺少对锂电池全生命周期的规划。锂电池的生命周期受使用环境、充放电循环工况等因素的影响,电池一旦老化,安全风险会急剧增加。电池的负荷状态(SOC)由100%降低到 80%一般认为电池即将寿命终止,按照目前的技术标准, 厂家承诺的电池寿命为 8年,而船舶的寿命按照 20~30年计算,在船舶的生命周期内要进行三到四次的电池更换,对于电池的生产、使用、报废、分解以及再利用等整个生命周期的综合处理,缺少相应的政策引导。  2、技术法规不完善  一是船用标准尚未建立。锂电池根据不同的应用领域其性能标准不尽相同,目前船用锂电池性能标 准参用电动汽车的相关标准,基础通用性能和试验标准还未形成。考虑到船用锂电池蓄能能力是车用锂电池能力级别的几十倍甚至上百倍,且船用产品工作环境更恶劣、 安全性能要求更高,因而船用试验标准引用 IEC及国标电动车标准,存在一定的局限性和不适用性。船用标准的构建和完善是目前急需解决的问题。  二是检验法规尚不完善。虽然相关海事局已经编制了内河动力船舶技术规范,但是由于船用锂电池产业能力偏弱,尚不具备向长途、 大功率船舶供货的能力,因而对于沿海电池动力船舶相关法规的编制尚处于起步阶段。  三是锂电池作为船舶动力应用的研究有待进一步深入。电池动力船舶根据能源形式一般可归为两类:纯电池动力船舶和混合动力船舶。由于电池动力船舶实船较少,对此类系统的安全性、动力匹配性研究及积累的经验尚显不足。两种技术路径的优劣还有待实际运营的验证, 缺少数据积累。纯电池动力的安全性差、能量密度低,以及一次性投入成本太高等缺点,是制约其在船舶领域大规模应用的主要障碍。动力电池作为大容量储能元件,其本身具有起火爆炸等隐患,在船舶航行中存在电池失效、控制系统失效风险,在船舶操纵过程中存在因故障、特殊天气条件导致的安全返航风险,在船舶停泊充电期间存在船岸操作安全事故风险等。  3、企业技术水平不高  电池动力船舶的整体性能取决于两个方面:船舶设计建造水平和关键部件(如动力电池和能源管理系统)生产质量。  船舶建造设计方面,依然处于初级阶段,目前的电动船依然是能源动力的替换,需要按照电动能源的性能特点,进行创造性的设计革新。  就电池动力和能源管理系统而言,并未形成具有明显市场优势的电池系统供应厂商以及推进和动力供应商,核心部件和产品与国外存在一定差距,船用电池系统、船用电池动力制造能力尚且不足。  4、船型应用受限  目前国内锂电池动力船舶的容量一般控制5000KWh以下,其续航里程受充电装置、充电时间的限制,其应用仅限于在短途客运、渡轮、景区旅游客船、短途定航线货船领域。  六、磷酸铁锂电池在船舶中应用的优势  新兴的“锂电池电动船舶”以绿色环保、零污染、安全以及使用成本低等优点,将成为内河、湖泊的短距离运输船、观光船、轮渡船等的首选船舶。而作为锂电池家族最安全磷酸铁锂电池,伴随着近年来相关锂电池技术在安全、长续航、大功率、长寿命等技术难题的突破,磷酸铁锂电池以其相对较低的价格,较高的能量密度简易的维护,以及优异的安全性能将成为电动船舶发展的优选能源。相对于其它锂电池,磷酸铁锂电池应用于船舶具有以下优势:  1)磷酸铁锂电池安全性更高  磷酸铁锂电池安全性和耐高温性能优异正交橄榄石结构的LiFePO4 正极磷酸铁锂电池是目前最安全的锂离子电池正极材料,且不含有对人体有害的重金属元素,其橄榄石结构的晶体结构构架稳固,氧(O )与磷(P)以强共价键牢固结合,使其结构中的氧难以与电解质发生氧化反应,即便在高温情况下也不会形成结构崩塌发热,这能够很好的保证电池充放电过程的稳定性与安全性,磷酸铁锂电热峰值可达 350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20℃~+75℃),其优异的高温性 能、安全性方面具有突出的优势使其成为中大容量、中高功率锂离子电池首选的正极材料。  2)磷酸铁锂电池的使用寿命更长  磷酸铁锂电池,完整充电循环寿命在 2000 次以上,标准充放电(5 小时率)使用,一般可达到 2000 次。而铅酸电池的循环使用次数在 300 次左右,最大一般不超过 500 次,使用年限多在 1~1.5 年时间,相同条件下的磷酸铁锂电池理论寿命将达到 7~8 年。并且磷酸铁锂电池具备大电流放电能力,也可使用大电流 2C 快速充放电,而铅酸电池现在无此性能。  3)量产产品单位能量密度较高具备价格优势  据报道,2018 年量产的方形铝壳磷酸铁锂电池单体能量密度在 160Wh/kg 左右,2019 年一些优秀的电池厂家大概能做到175-180Wh/kg 的水平,个别厉害的公司量产的磷酸铁锂电池单体能量密度最高已突破 190Wh/kg,目前市场上已经有攻克磷酸铁锂电芯 200wh/kg 的高难度,并且磷酸铁锂体系还可继续提升能量密度,随着市场对未来电动船舶市场、储能市场的看好,未来磷酸铁锂电池应用在电动船舶领域的比例增多的同时必然会在能量密度将迎来较大的发展,同时单位价格也会呈现下降趋势。  4)绿色无污染的环保产品  磷酸铁锂电池一般不含任何重金属与稀有金属无毒无污染(由 Societe Generale de Surveillance S.A.认证通过),且符合欧洲《关于限制在电子电器设备中使用某些有害成分的指令(Restriction of Hazardous Substances) 规定,是绝佳的绿色环保电池。  七、磷酸铁锂电池在电动船舶中应用的主要船型  当前纯电动船舶在观光客船、景区画舫、沿江沿海渡船、和内河货船、港口拖船、江海联运散货船、集装箱船等多种船型等船型均有应用,船型方面包含客船、渡船、旅游船、公务船、工程船、干散货船、集装箱船等多种船型。不过现阶段超过 5000 吨级的中大型船舶完全锂电化难度依然较大。目前结合当前政府在船舶电动领域的推广情况和内河、湖泊区域的环保要求来看,未来一段时间内船舶电动化尤其是纯电动船将主要在内河水域、湖泊等相对封闭水域获得较大发展,主要集中在沿江沿海城市渡船、观光船、内河 (湖)货船、港口拖船等市场 。且这些船舶吨位多集中在 2000 吨以内的船舶类锂电池在汽车、电脑等方面已有大量的应用,但船舶市场应用相对较少。目前,大容量电池储能系统、电池管理系统等关键技术已有了重大突破,而且各国政府环保政策等外 部因素的推动,也为船舶电池应用的发展提供了强有力的后盾。船舶的锂电池应用应该以此为契机,进行发展及推广, 以满足日益严格的环保要求。  八、行业龙头锂电池公司介绍  1. 宁德时代  宁德时代新能源科技股份有限公司成立于2011年,是国内率先具备国际竞争力的动力电池制造商之一,专注于新能源汽车动力电池系统、储能系统的研发、生产和销售,致力于为全球新能源应用提供一流解决方案,核心技术包括在动力和储能电池领域,材料、电芯、电池系统、电池回收二次利用等全产业链研发及制造能力。2017年该公司动力锂电池出货量全球遥遥领先,达到11.84GWh。已与国内多家主流车企建立合作关系,并成功在全球市场上占据一席之地,也成为国内率先进入国际顶尖车企供应链的锂离子动力电池制造厂商。  2. 比亚迪  比亚迪业务布局涵盖电子、汽车、新能源和轨道交通等领域,从能源的获取、存储,再到应用, 全方位构建零排放的新能源整体解决方案。在新能源领域,比亚迪拥有电池、太阳能、储能等新能源产品及完整的产业链,产品遍及美国、德国、日本、瑞士、加拿大和澳大利亚等新能源发达市场和新兴市场。  3. 亿纬锂能  惠州亿纬锂能股份有限公司(简称:亿纬锂能)成立于2001年,于2009年在深圳创业板首批上市,历经21年快速发展,已成为具有全球竞争力的锂电池平台公司,同时拥有消费电池和动力电池核心技术和全面解决方案,产品广泛应用于物联网、能源互联网领域。  4. 国轩高科  国轩高科股份有限公司于1995年01月23日,公司经营范围包括锂离子电池及其材料、电池、电机及整车控制系统的研发等。2019年10月22日,“2019全球新能源企业500强榜单”发布,国轩高科股份有限公司位列第185位  5. 鹏辉能源  鹏辉能源(深圳创业板,股票代码300438)成立于2001年,注册资本4.2亿元人民币,鹏辉是一家20余年来一直专注于锂电池生产制造与研发的高新技术企业。公司业务范围已覆盖数码消费类电池、新能源汽车动力电池、储能电池以及轻型动力电池、电动工具电池等众多领域,全面实现了新能源产业链的完美覆盖,并率先实现规模化生产,拥有自主知识产权,主要技术指标处于国内、国际先进水平。  6. 中航锂电  中航锂电成立于2007年,是由中国航空工业集团公司、中国空空导弹研究院、四川成飞集成科技股份有限公司、中航投资控股有限公司、航建航空产业股权投资(天津)有限公司、江西洪都航空工业股份有限公司、洛阳兴航投资有限责任公司共7家单位,共同投资建设的专业从事锂离子动力电池、电源管理系统研发与生产的高科技公司,是一家拥有先进管理、技术、制造能力的现代企业。公司位于河南省洛阳市国家高新技术开发区,专业从事锂离子动力电池、电源管理系统的研发和生产,是国内领先的生产100AH以上高倍率、长寿命、大容量锂离子动力电池制造专业公司,是承担国家863重大专项“大容量磷酸铁锂动力电池及动力模块技术开发”的单位。

作者: 刘吉波 详情
description
年产7万吨!宁德厦钨锂离子电池正极材料项目预计9月投产

3月5日下午,在宁德厦钨7万吨锂离子电池正极材料(CD车间)项目施工现场,四百余名工人各司其职,分布在各楼层进行施工,有序推进项目建设。  该项目主管介绍,目前车间C以及CD宿舍楼已封顶,车间D计划3月底完成封顶;车间C第一台设备预计7月份进入安装,9月份完成安装调试投入生产。  据了解,该项目为福建省在建重点项目,位于东侨工业集中区工业路西侧、河墘路南侧,总投资24.45亿元。共分三期建设,一期主要建设CD两栋车间和配套设施,同时在车间C建设4条锂离子电池正极材料生产线;二期主要在车间C建设4条生产线;三期主要在车间D建设8条生产线,预计2026年8月竣工。项目建成投产后,预计可年产7万吨锂离子正极材料。

作者: 中国·蓄电池网 详情
description
锂电池“俏”当更争春

2023年,新能源汽车、锂电池、光伏产品合计出口金额1.06万亿元,首次突破万亿元大关,增长29.9%。  具体到锂电池,据统计,2023年我国锂电池累计出口超过150吉瓦,同比增长超60%。锂电池出口的持续增长,为我国在日益复杂的外部环境下实现外贸促稳提质提供了有“锂”支撑。锂电走俏原因何在  厦门大学中国能源经济研究中心教授孙传旺在接受记者采访时表示,锂电走俏主要有三方面因素:“第一,市场利好因素叠加。欧美主流市场与亚非新兴市场并起,海外新能源汽车和新型储能高景气度带动锂动力电池和锂储能电池需求渐进放量。第二,成本质量优势显著。中国已形成涵盖锂矿开采冶炼、电池制备应用、废料循环再生的完备产业链条,上下游前后配套、资源整合、供应保障能力较强,规模经济、降本提质效能不断释放,有效提升了品牌认可度和市场竞争力。第三,关键技术实力强劲。国内龙头企业核心技术研发能力稳步提升,磷酸铁锂与三元锂电技术在能量密度与使用寿命指标上均占优,充分强健锂电产业发展韧性与自主可控能力。”  2023年12月,工信部科技司印发《锂离子电池综合标准化体系建设指南(2023版)》(征求意见稿)(以下简称《指南》)。《指南》显示,锂离子电池是支撑新型智能终端、电动交通工具、新能源储能等产业发展的重要电子基础产品。  《指南》指出,按应用领域划分,锂离子电池主要包括消费型锂离子电池、动力型锂离子电池、储能型锂离子电池。其中,消费型锂离子电池是为手机、笔记本电脑、可穿戴设备、无人机等电子产品提供能量;动力型锂离子电池是为电动汽车、电动自行车、电动飞机、电动船舶等电动装置提供能量;储能型锂离子电池则服务于新能源储能、工商业储能、家用储能、应急储能等领域。  不难看出,便携式电子设备的普及应用、全球电动汽车市场的迅速崛起,以及储能需求的与日俱增对锂离子电池发展形成了强大助推。  当然,也离不开中国制造商在锂电池领域的竞争优势。《指南》显示,在产业界共同努力下,我国已发展成为全球最大的锂电池生产国,建成了从上游关键材料到电芯制造、电池组装、设备制造的完备体系。另中国汽车工业协会披露的数据显示,中国申请的动力电池专利占据了全球的74%。  《指南》明确,锂离子电池综合标准化技术体系主要包括基础通用、材料与部件、制造与检测、电池产品、回收利用、绿色低碳6大类、25个小类。  《指南》同时要求,到2028年,锂离子电池标准的技术水平达到国际先进水平,基本实现产业基础通用标准和重点产品标准全覆盖。锂电“重镇”的探索实践  提及锂电池生产企业,人们第一时间就会想到龙头企业宁德时代,而宁德时代总部就坐落于我国福建。与此同时,福建还有中创新航、海辰储能等动力储能头部企业。  据厦门海关统计,2023年福建锂电池出口1287.5亿元,同比增长49.5%,创历史新高,居全国首位。其中,对共建“一带一路”国家出口353亿元,增长80.3%。对韩国、日本、墨西哥分别出口80亿元、24.1亿元、8.3亿元,分别增长108.7%、379%、198.7%。  如此看来,讲述锂电池“出海”的故事,福建颇具发言权。  2023年8月16日,宁德时代发布了全球首款采用磷酸铁锂材料并可实现大规模量产的4C超充电池——神行超充电池,实现“充电10分钟,续航400公里”的超快充速度,并达到700公里以上的续航里程。  宁德时代科士达科技有限公司申请的“时代科士达”商标也获得中国海关总署知识产权保护备案。该公司主要从事储能装置及管理系统研发、锂电池制造等,产品出口荷兰、德国等地。通过此次海关知识产权保护备案核准,该公司产品将更具市场竞争力。  记者从福建省发展改革委获悉,针对锂电池上游产业规模偏小、产能结构不合理等问题,福建从全省的角度整体布局,统一规划,根据产业链不同环节的需求,发挥不同区域的优势。比如,厦门重点聚焦锂电池终端产品;南平、三明、龙岩等山区发挥石墨、氟新材料等资源禀赋优势,布局正负极材料、电解液生产基地;福州、漳州、泉州等沿海地区依托石化基础,围绕隔膜、电解液、壳体等,打造一批特色制造基地……  鉴于货物通关速度和生产交付能力逐步成为企业抢占海外市场的关键,根据锂电池产品出口的实际需求,厦门海关采取“一对一”方式建立健全企业协调员制度,持续做好锂电池行业出口数据分析研判,帮助企业掌握锂电池等进出口危险货物检验依据、法律法规、注意事项及申报流程。  1月10日,福建省人民政府公布《关于支持宁德市开发三都澳建设新能源新材料产业核心区的意见》,明确提出以宁德时代等企业为龙头,在动力电池国家先进制造业集群基础上,建设全球最大的消费类电池、动力电池和储能电池生产研发基地,争创国家级战略性新兴产业集群,建设集聚两岸资源要素、具有全球竞争力的先进制造业集群,打造世界“锂电之都”。蓄力发展的方向建议  事实上,外贸“新三样”新能源汽车、锂电池、光伏产品样样离不开锂,可谓“有‘锂’走遍天下”。  2023年8月,工信部、国家发展改革委、财政部等七部门联合印发的《有色金属行业稳增长工作方案》要求,针对铜、铝、镍、锂、铂族金属等紧缺战略性矿产,加大国内勘查开发力度,制定锂等重点资源开发和产业发展总体方案。  1月17日,记者从自然资源部获悉,我国在四川雅江探获锂资源近百万吨,这是亚洲迄今探明最大规模伟晶岩型单体锂矿。  近年来,我国锂矿等稀有金属找矿工作在川西、昆仑、阿尔金、幕阜山、喜马拉雅等成矿带实现重大突破,锂矿增储取得良好进展。同时,我国锂辉石矿、锂云母矿分布范围广,全国有1500多个盐湖,通过加大锂矿区块出让力度,可进一步挖掘锂矿找矿潜力;我国部分锂矿探矿权勘查程度较低,通过进一步加强地质勘查工作,锂矿增储空间较大。  谈及产业链上游,卓创资讯锂行业分析师韩敏华告诉记者,2023年上游原料碳酸锂价格下跌,正极材料、电解质价格跟跌,锂电池成本有所下降。  “电池级碳酸锂价格累计下跌约40万元/吨,折合锂电池成本下跌0.24元/瓦时左右。预计2024年碳酸锂价格低位震荡,锂电池生产成本或维持窄幅波动状态。”韩敏华说。  在中国化学与物理电源行业协会秘书长王泽深看来,我国锂电产业发展仍然存在资源供给保障压力大、产能利用率退坡、投融资热度退潮、前沿电池技术创新各国竞争激烈、产业链价格集体下滑、全产业链良性发展待修复、“出海”安全风险考虑不足等问题。  孙传旺指出:“锂电池出口尚面临不少挑战。一方面,我国锂电产业面临供需波动错配和资本过度投入引致的结构性产能过剩与周期性盈利风险,亟待拓展海外市场进行去库存、优产能。另一方面,欧盟碳边境调节机制、《新电池法》,美国《通货膨胀削减法案》等相继实施,在电池护照建立、资源回收利用及碳足迹认证等方面对锂电产品‘出海’形成多重掣肘,中国锂电出口企业承接订单、扩增市场份额阻力增加。”

作者: 曲艺 详情
description
年产6万吨锂电池负极材料生产线项目落子四川雅安

2月29日,四川省雅安市芦山县年产6万吨锂电池负极材料高温提纯生产线建设项目签约仪式举行。  据了解,年产6万吨锂电池负极材料高温提纯生产线建设项目,“含绿量”高、“含新量”高、“含金量”高,符合芦山锂电新材料产业发展方向,建成后也有利于助推芦山加快优化产业结构,为县域经济高质量发展提供强劲动力,为推动构建现代化产业体系,进一步夯实芦山工业产业发展提供强劲动力支撑。  据悉,年产6万吨锂电池负极材料高温提纯生产线建设项目建成投产后,芦山锂电池负极材料产业将成为国内工序最全的一体化项目,同时依托雅安富集、零碳的水电资源优势,将成为国内最具成本竞争力的锂电池负极材料制造基地,成为芦山大力发展经济的靓丽窗口与名片。

作者: 中国·蓄电池网 详情
description
年产20万吨锂离子电池正极材料生产线项目开工

2月29日上午,甘肃省委省政府及兰州市委市政府相继举行2024年一季度重大项目集中开工仪式。  本次新区集中开工项目38个,总投资268亿元,年度计划投资103亿元;其中,产业项目27个,总投资230亿元,年度计划投资81亿元。    开工仪式现场,甘肃金麟年产20万吨磷酸系锂离子电池正极材料生产线建设项目正式动工建设。该项目总投资30亿元,年度计划投资5亿元,建成后预计实现年销售收入106亿元、税收2.2亿元,将有力促进新区锂离子电池产业聚链发展。

作者: 中国·蓄电池网 详情
description
最佳压实密度对锂电池设计的影响

锂电池在制作过程中,压实密度对电池性能有较大的影响。一般来说压实密度与极片比容量,效率,内阻,以及电池循环性能有密切的关系,找出最佳压实密度对电池设计非常重要。  一般来说,在材料允许的压实范围内,极片压实密度越大,电池的容量就能做的越高,所以压实密度也被看做材料能量密度的参考指标之一。但是一味的追求高压实,不但替身不了电池的比容量,还会严重降低电池比容量和循环性能。图1 极片轧制生产线示意图  压实密度越大,材料颗粒之间的挤压程度会越大,极片的孔隙度就会越小,极片的吸收电解液的性能就会越差,电解液越难以浸润,那么直接的后果就的材料的比容量发挥较低,电池的保液能力较差,电池循环过程中极化就大,衰减就会较大,内阻增加也尤为明显。因此合适的正极压实密度可以增大电池的放电容量,减小内阻,减小极化损失,延长电池的循环寿命,提高锂离子电池的利用率。在压实密度过大或过小时,不利于锂离子的嵌入嵌出。那么影响正极极片压实密度的压实密度有哪些呢?影响压实密度的因素影响压实密度的因素  影响正极极片压实密度的主要因素主要有以下四点:  ①材料真密度  ②材料形貌  ③材料粒度分布  ④极片工艺。  材料真密度  目前几种商业厂家的正极材料的真密度和目前所能达到的压实密度见表(表中所选三元材料为NCM111),可以看出,几种材料的真密度:钴酸锂>三元材料>锰酸锂>磷酸铁锂,这和压实密度的规律一致。需要指出的是,不同组分三元材料的真密度随组分的变化而变化。几种商业正极材料的真密度和压实密度范围材料形貌  三元材料和钴酸锂的真密度差别并不大,从上表可以看出,NCM111和钴酸锂的真密度只差0.3g·cm-3,压实密度却比钴酸锂低0.5g·cm-3,甚至更高,导致这个结果的原因很多,但最主要的原因是钴酸锂和三元材料的形貌差别。  目前商业化的钴酸锂是一次颗粒,单晶很大,三元材料则为细小单晶的二次团聚体,如图所示。从图中可看出,几百nm的一次颗粒团聚成的三元材料二次球,本身就有很多空隙;而制备成极片后,球和球之间也会有大量的空隙。以上原因使三元材料的压实密度进一步降低。钴酸锂和三元材料SEM图材料粒度分布  等径球在堆积时,球体和球体之间会有大量的空隙,若没有合适的小粒径球来填补这些空隙,堆积密度就会很低。所以合适的粒度分布能提高材料的压实密度,而不合理的粒度分布则造成压实密度显著降低。极片工艺  极片的面密度,黏结剂和导电剂的用量都会影响压实密度。常见导电剂和黏结剂的真密度见如表。从表中可以看出,常见导电剂和黏结剂的真密度  材料的真密度对压实密度的影响是无法改变的,但从压实密度和真密度的对比中可以看出,三元材料的压实密度还有很大的提升空间。如何提高压实密度  目前提高压实密度的方法主要从材料形貌、材料粒度分布、极片工艺三方面入手。例如将三元材料的形貌制备成和钴酸锂类似的大单晶;优化三元材料粒度分布;极片制作时使用导电性好的导电剂以降低导电剂用量,调浆过程高速分散,使导电剂和黏结剂均匀分散等等。  下面是从优化三元材料形貌和粒度方面来提升三元材料压实密度的实例。  优化形貌  常见几种三元材料的形貌及其极片(辊压后)的SEM图如图所示。其中(a)、(c)、(e)为三种不同形貌的三元材料的SEM图,放大倍数相同。(b)、(d)、(f)分别为(a)、(c)、(e)的辊压后极片低倍SEM图。  (a)所示是最常见的三元材料形貌,即小单晶的二次团聚体,其辊压后的极片SEM图如(b)所示,二次颗粒之间有较大空隙,且部分二次颗粒已经被压碎,部分没有接触到黏结剂的小单晶已经脱落;(c)的形貌为一次单晶三元材料,但比(a)的单晶稍大一些,从其对应极片(d)可以看出,单晶颗粒之间有少量空隙,因为不存在二次颗粒破碎的问题,所以只要黏结剂分散均匀,便不存在单晶从极片脱落的问题;(e)虽然也是二次团聚体,但是单晶很大,单晶和单晶之间接触并不是很紧密,从其对应极片(f)可以看出,颗粒和颗粒之间的空隙很少,如果使用高速混合机来制备浆料,效果会更好。  图中(a)、(c)、(e)三种形貌的材料对应的压实密度结果对应(g)中的a、c、e。从图中可以看出,(a)形貌的材料压实密度最低,但和(c)的压实密度相差不多,(e)的压实密度比(a)和(c)的高很多,已经达到3.9g·cm-3。  不同形貌三元材料及其极片SEM图、压实密度对比  优化粒度分布  D50接近的材料,若D10、D90、Dmin、Dmax有差别,也会造成压实密度不同。粒度分布太窄或粒度分布太宽都会使材料压实密度降低。对于粒度分布的影响,有的电池厂家会对正极材料生产商提出要求,而有的电池厂家则通过混合不同粒度分布的产品来达到提高压实密度的目的,如图所示。不同粒度分布的正极材料极片SEM图过压  造成三元材料极片过压的原因有两种,一种是电池厂家为了追求电池的高能量密度导致极片过压,例·如将压实密度只有3.6g·cm–3左右的三元材料压至3.7g·cm–3甚至更高;另一种是材料厂家制程控制不严格,使不同批次三元材料的压实密度不一致,电池厂家未分析材料的具体情况,按照常规工艺参数制备极片时将极片过压。过压后极片的SEM图  极片过压会造成电池容量降低,循环恶化,内阻增加等问题。首先,极片过压会使球形三元材料大面积破碎,新产生的表面有很多脱离了二次球的一次小颗粒,它们要么因为没有接触到PVDF而从极片上掉落,要么因为没有接触到导电剂而使极片导电性能局部恶化。新表面的产生也使比表面增大,与电解液的接触面增大,副反应增加,从而造成电池性能降低,如电池气胀、循环衰减等。过压还会造成铝箔变形,极片脆片,容易折断,电池内阻增加。  另外,过压的极片中,材料颗粒之间的挤压程度过大,造成极片孔隙率低,极片吸收电解液的量也会降低,电解液难以渗透到极片内部,直接的后果就是材料的比容量发挥变差。保液能力差的电池,循环过程中极化很大,衰减很快,内阻增加明显。  极片是否过压可以通过观察极片是否脆片、做电镜查看材料是否被破碎、估算极片孔隙率等方法来判断。其中极片孔隙率是判断极片吸液量、吸液速率的一项重要指标,对电池性能产生直接影响。  极片孔隙率是指极片辊压后内部孔隙的体积占辊压后极片总体积的百分率。极片孔隙率过低会降低电解液量对极片浸润速率,影响电池性能发挥,过高会降低电池能量密度,浪费有效空间。不能为了追求能量密度而过度提高压实密度。孔隙率的测试可以采用压汞法、氮吸附、吸液法、估算法等,压汞法为常用方法。吸液法具体操作步骤如下:裁取适量极片,并计量所述极片的质量m;计量所述极片的体积V;将所述极片放置到容器中,所述容器内设置有电解液或其他溶剂(溶剂密度为ρ),将所述极片完全浸泡,并浸泡一定时间;取出所述极片,放置于滤纸上,吸拭至恒重,计量所述极片的质量m1;根据公式ε=(m1–m)/ρV×100%,计算极片的孔隙率ε。估算法较为简单,根据材料的真密度与极片压实密度的差值可以估算极片的孔隙率。极片孔隙率计算方程式如下:  极片孔隙率(%)=(混合物真密度–极片压实密度)/混合物真密度×100%    下表给出了三元材料和钴酸锂在不同压实密度下的孔隙率,数据由上式计算得出。下表的计算基础为:三元极片中包含95%的三元材料,3%导电剂,2%黏结剂(均为质量分数),三元材料的真密度为4.8g·cm–3,导电剂的密度为1.9g·cm–3左右,黏结剂的密度为1.78g·cm–3,那么混合物的真密度约为4.65g·cm–3。钴酸锂极片中包含95%的钴酸锂,3%导电剂,2%黏结剂,LiCoO2的真密度为5.1g·cm–3,导电剂的密度为1.9g·cm–3左右,黏结剂的密度为1.78g·cm–3,那么混合物的真密度约为4.94g·cm–3。三元材料和钴酸锂在不同压实密度下的孔隙率典型值  圆柱电池极片长度计算方法  电池卷芯是一种阿基米德螺线,根据相关理论,卷芯的半径 r 和总的旋转角度ϕ关系可由下式计算:  当卷芯内核卷针半径为r0时,有:  其中,ϕ 是卷绕旋转总角度,r0 为卷芯内核卷针直径,螺线参数 a 计算方法为:  t是卷芯中基本组成单元的厚度,对于圆柱形电池,t相当于正极、负极极片的厚度和两层隔膜的厚度,如图1所示。图1 卷芯中基本组成单元的厚度  根据阿基米德螺线理论,根据下方公式分别计算内核弧线长度和整体的弧线长度,两者差值为正极长度,有:  常见的圆柱电池外径、壳体厚度和壳体内部空间直径如下表所示。  其中,卷芯内核卷针直径主要由两个方面决定:(1)卷芯中间空间能够将底部极耳焊接到电池壳体内部;(2)涂层电极不会开裂的最小弯曲半径决定。  举例说明,对于特斯拉采用的21700电池,参数为:  正极极片厚度174μm;  负极极片厚度143μm;  隔膜厚度10μm;  卷芯基本单元厚度t= (174+143+10*2)μm=337μm;  螺线参数 a=t /2π =53.66μm。  卷芯内核卷针直径为2mm,内核中空部分旋转弧度 ϕ= r/a = 1 mm / 53.66 μm = 18.63,对应的圈数为 ϕ/2π=18.63/(2*3.14)=2.97;  壳体内部空间直径为20.4mm,考虑到卷芯膨胀空间,卷芯直径为19.4mm,则包含空心内核的旋转弧度 ϕ= r/a = (19.4/2) mm / 53.66 μm = 180.77,对应的圈数为ϕ/2π=180.77/(2*3.14)= 28.77;  则正极实际卷绕圈数为 28.77-2.97=25.8。  根据以下公式  内核中空部分旋转弧线长 l=9.4mm  包含空心内核的旋转弧线长 l=874.2mm  则正极实际长度为 874.2 – 9.4 = 864.8mm  理论计算的正极长度与实际测量值 865mm 吻合。    公式比较复杂,进一步进行简化。  公式中,ϕ一般都比较大,比如21700电池ϕ=180.77,简化1+ϕ^2≈ ϕ^2,而且ln(ϕ+√(1+ϕ^2)) ≈ ln(ϕ+ϕ) ≈ ln(2ϕ),其值为2~3,也忽略不计,则有  根据以上公式分别计算内核弧线长度和整体的弧线长度,两者差值约为为长度。因此,如图2所示,已知卷芯内核直径d,卷芯外径D,卷芯中基本组成单元的厚度t正极、负极极片的厚度和两层隔膜的厚度之和。图2 卷芯示意图    极片长度的估算方法为:  还是以特斯拉采用的21700电池为例,  d=2mm  D=19.4mm  t=337μm  由公式计算极片长度L=867.8 mm  计算值与第一种方法所计算的864.8mm以及实际测量值865mm差别不大。  软包卷绕电池电化学和结构设计!  一、锂离子电池设计原则  1.1 安全  在产品设计中,必须尽可能的消除任何危害终端客户人身和财产安全的隐患。  1.2 客户需求  满足客户为第一准则,项目负责人必须经常与客户流通,了解其对产品的使用体验。  1.3 成本  在不影响客户使用效果的前提下,降低成本是对公司和客户负责的体现。  1.4 法规  产品必须遵守本国和产品消费国之相关法律法规。  二、电化学设计部分  2.1 正极配方  2.2 负极配方  2.3 面密度/克容量/压实密度设计  2.4 负极余量设计  负极容量余量:因为负极从开始形成SEI膜到循环的修复SEI等反应,需要不断消耗锂离子,所以负极需要设定一定的损耗余量。

作者: 中国·蓄电池网 详情
description
钠离子电池,分庭抗“锂”靠什么?

近来,随着钠离子电池“上车”的消息频出,钠离子电池产业化落地更加明朗。  2023年12月27日,全球首款搭载钠离子电池的电动汽车江淮钇正式下线,新车已于2024年1月5日开启批量交付。该车型定位于A00级微型电动车,目前售价5.99万起。据悉,江淮钇搭载的是中科海钠科技有限公司供应的独创的钠离子圆柱电芯,该电池具有蜂窝电池结构,具备“永不自燃”的安全特性。  2023年12月28日,江铃集团与孚能科技合作推出的首款钠离子电池纯电A00级车型江铃易至EV3(青春版)也正式下线。  在江淮和江铃之外,奇瑞、比亚迪等电动四轮车企和淮海等电动三轮车企都有清晰的钠离子电池上车计划,或者已经向中机车辆技术服务中心申报了相关车型;雅迪、台铃、新日等电动两轮车企则推出了搭载钠离子电池的车型。这些企业成为钠离子电池产业的助推者。  对此,第三方电池行业研究智库、真锂研究创始人墨柯表示,钠离子电池技术成熟后,势必会侵分部分铅酸电池及磷酸铁锂电池的市场。  不过,这将是一个漫长且曲折的过程。2021年,钠离子电池因锂价疯涨而迅速崛起,但随着锂价归位,钠离子电池的成本优势将不再突出。钠资源何以成为风口?  钠离子电池最早引起关注始于2021年动力电池巨头宁德时代的突然入场。  2021年7月29日,宁德时代对外发布了其第一代钠离子电池,宣称其电芯单体能量密度达到160瓦时/千克,为目前全球最高水平。这种电池在常温下充电15分钟电量可达80%;在零下20摄氏度的低温环境下,仍然有90%以上的放电保持率;系统集成效率可达80%以上。  2021年9月16日,宁德时代董事长助理孟祥峰曾透露,2022年宁德时代将有一条钠离子电池生产线投产运行。由此,宁德时代彻底引爆了中国钠离子电池产业的创新热潮。此前,中国做钠离子电池创业的公司屈指可数,随着宁德时代的抛砖引玉,钠离子电池创业公司便如雨后春笋般涌现。  其实,钠离子电池在风口“起飞”,离不开两个关键因素,其一是钠资源量大且易得。从储量来看,钠资源在全球的陆地或海洋中均有广泛分布。资料显示,钠资源在地壳中的储量高达2.75%的丰度,是锂资源的420倍。我国的矿石、盐湖、海水中均有钠资源的分布,相较仅存在于盐湖卤水或矿石中的锂资源更易得。其二是锂资源价格“过山车”式的涨跌幅度让业内叫苦不迭。以电池级碳酸锂产品为例,从2020年年底到2022年11月,该品类的价格经历了从最初的几万元/吨上涨到最高接近60万元/吨。而在2023年,碳酸锂的价格全年跌幅超过80%,这让电池企业的成本压力陡增。  基于这两点,钠离子电池产业迅速升温。在短短两年多时间内,国内的钠离子电池创业公司已达100多家,以至于有业内人士称:“2021年下半年之后,几乎每周都有一家钠离子电池公司诞生。”  据高工锂电统计,2023年至2025年,钠离子电池企业有效产能将分别达到19吉瓦时、25吉瓦时和60吉瓦时。  能在短时间内做到从中试到量产上车,与钠离子电池的独特产品性能分不开。相较锂离子电池,钠离子电池具备五大优势。第一,钠离子电池具有优异的低温性能,能够弥补目前锂离子电池低温特性差导致冬天续航里程衰减的缺点。第二,虽然钠离子电池目前能量密度略低,是磷酸铁锂电池的80%左右,但其能量密度提升速度较快,未来2年可提升至160~180瓦时/千克,接近磷酸铁锂电池,未来5年更是有望达到200瓦时/千克,成本优势将进一步突出。第三,相较锂离子,钠离子的电导率更高,快充性能更强,可以大幅提高充电速度。第四,钠离子电池可以完全放电至0伏,可以0伏存储和运输,提高了运输的安全性。第五,钠离子电池在使用过程中的电压曲线更具可测性,能够更加精确地估算整车剩余里程。  从目前上车的电动汽车车型来看,不管是已经量产的车型,还是在规划中即将量产的车型,基本以微型车为主。  依据汽车的轴距、排量、重量等参数可以将汽车划分为A、B、C、D、E、F级车,字母顺序越靠后,该级别车的轴距越长、排量和重量越大,豪华程度也不断提高。其中A级车又可以分为A00级、A0级和A级三类,前两类车都属于紧凑型的近距离代步车,对车的续航里程没有太高要求,所以很适合采用能量密度相对较低的钠离子电池。例如,近期江淮下线的钠离子电池花仙子车型续航里程为252千米,江铃下线的江铃易至EV3(青春版)车型续航里程为251千米;再如搭载宁德时代钠离子电池的奇瑞QQ“冰淇淋”车型,其续航里程预计为120千米或170千米。  此外,钠离子电池的高安全性和低温性能,在丰富多样的储能市场有望占有一席之地,成为与磷酸铁锂齐头并进的主流技术路线,但目前钠离子电池的循环寿命限制了其在储能行业的推广。分庭抗“锂”靠什么?  尽管钠离子电池上车已崭露头角,但这并不意味着钠离子电池短期内可以跟磷酸铁锂“硬钢”。  从发展阶段来看,钠离子电池行业还处于起步阶段。中国工程院院士陈立泉公开表示,钠离子电池的成本有望比磷酸铁锂电池低20%以上,但这需要完善产业链、提高技术成熟度以及实现规模效应。  伊维经济研究院研究部总经理吴辉认为,钠离子电池产业化要满足三个条件:首先,技术参数指标如能量密度、循环寿命、安全性、低温性能和倍率性能必须达到要求,并且可控制致命缺陷;其次,需要从中试线转向量产线,并进行规模化建设,同时展示下游示范应用;最后,通过培养产业链上下游来降低物料成本,并利用规模效应和设备自动化来降低制造成本。  根据吴辉的调研,目前钠离子电池产业主要为中试线,并未实现真正意义上的大规模量产,0.7元/瓦时的成本依然较高,相较磷酸铁锂电池仍不具备优势。  此外,因价格而略胜一筹的钠离子电池也在2023年迎来锂价暴跌这记“重拳”。  2021年,钠离子电池的骤然火爆源于锂资源的紧缺且价格暴涨,当年电池级碳酸锂价格从几万元/吨上涨到了最高接近60万/吨;如今电池级碳酸锂的价格已相对稳定,维持在10万元/吨左右。  据生意社商品行情分析系统数据,截至2023年12月31日,工业级碳酸锂国内混合均价为9.4万元/吨,与2023年1月1日均价50.4万元/吨相比下降了81.35%;而2023年12月31日国内电池级碳酸锂混合均价为10.3万元/吨,与2023年1月1日的52.5万元/吨均价相比下降了80.38%。  上海钢联分析师郑晓强认为, 2024年碳酸锂市场会围绕下游企业消化库存,预计碳酸锂价格会在8万元/吨~12万元/吨进行宽幅震荡。这意味着钠离子电池降本的速度远赶不上锂离子电池降本的速度,钠离子电池的成本优势就会降低甚至消失。  在2023年4月召开的高工钠电峰会上,浙江青钠董事长王子煊算了这样一笔账:碳酸锂价格为20万元/吨时,钠离子电池的边际成本领先约24%;碳酸锂价格为10万元/吨时,钠离子电池的边际成本领先约12%;若碳酸锂价格回归到5万元/吨,钠离子电池边际成本仅领先约5%。  与此同时,产业界对钠离子电池的高预期并没有实现。2022年,宁德时代研究院副院长黄起森公开表示,在乘用车应用方面,钠离子电池普遍可以满足续航400千米以下的车型需求,通过AB电池系统集成技术,有望使钠离子电池应用扩展到500千米续航车型,这一续航车型会面向65%的市场,应用前景非常广阔。同时,宁德时代正在推进钠离子电池在2023年实现产业化。  但这显然是一个过于乐观的预期。无论是宁德时代未来适配的奇瑞车型,还是头部创业公司中科海钠等已经适配的车型,车的续航里程都没超过260千米。这也说明钠离子电池能量密度的提升,并未如预期那样迅速。  2023年,宁德时代并没有实现钠离子电池的产业化,但钠离子电池长寿命、宽温区、高倍率、高安全、低成本、可与锂离子电池共线等优点仍被业界看好。在2023高工钠电产业峰会上,易事特董事长何佳认为,钠离子电池和锂离子电池会长期共存,只是在不同阶段和应用中分工会有所不同。在某些领域中,锂电池是必须使用的,而在其他领域则可以采用钠离子电池。凭借其多项优势,钠离子电池有望成为铅酸电池的替代品,以及锂离子电池的重要补充。

作者: 袁素 详情
description
盘古新能源:钠电处于产业化前夕,发展需要全链条协同

碳酸锂价格回落,市场上对钠电池“平替锂电”的声音趋弱,但经过一年的发展,钠电池产业化加速明显,上游材料端在2023年实现国产化,钠电池成本较去年同期已下降超过七成。  钠电池的热度还体现在融资速度上,无锡盘古新能源有限责任公司(原:深圳盘古钠祥新能源有限责任公司)(简称:盘古新能源)三个月先后完成两轮融资,集结了国资股东,如无锡市市政公用产业集团和无锡云林产业发展投资基金(有限合伙),以及新宙邦、格林美、京山轻工、证通电子、星源材质等上市公司股东,阵容不可谓不强大。  随着资金弹药丰盈,盘古新能源总投资26.2亿元的研发总部及制造基地项目签约落地江苏锡山,该项目规划用地200亩,预计建设钠离子电池研发中心和5GWh的量产产线。  碳酸锂价格日益走低,一定程度影响钠电产业化,但钠电与生俱来的低温性能、高充放电倍率和材料价格低廉仍是广泛讨论的优势。  11月28日,盘古新能源全资子公司深圳盘古钠电有限责任公司总经理吕江英接受了21世纪经济报道记者采访。他谈到,钠电池正处于产业化的前夕,产业化不仅要靠电芯厂,还需要整个产业链包括三大主材(电解液、正极、负极)一起协同努力,争取明年钠电BOM成本降到0.4元以下。三大主材降本明显  盘古新能源由胡明祥与雄韬股份(002733.SZ)于2022年共同发起成立,总经理吕江英在电池也有21年的经验积累,见证了从消费电池、动力电池、储能电池的变迁。  “盘古新能源旗下拥有多款钠电系列产品,其中,盘星系列(高能量密度电芯)能量密度可以达到270Wh/L、盘龙系列(超高功率电芯)可以做到30C持续放电,实现瞬时50C~60C放电、盘山系列(长循环电芯)主要用于储能,产品涵盖了圆柱电芯、方形电芯和软包电芯,32140圆柱电池已经实现量产出货。”吕江英介绍。  在技术路线方面,钠电池正极发展出三种主要技术路线,分别是层状氧化物、聚阴离子化合物和普鲁士类化合物。  层状氧化物技术路线由于其出色的能量密度和倍率性能,产业化速度较快,也是盘古新能源目前主推的技术路线之一。  聚阴离子化合物能量密度相对较低,但由于其高稳定性、电化学稳定性以及循环寿命可观,盘古新能源也有相应布局。  “作为一家初创企业,公司目前的规划是先站住脚,圆柱电池批量出货。聚阴离子化合物路线主要是瞄准储能技术路线。”吕江英表示。  除了正极以外,钠电池同锂电池类似,还有负极和电解液两大主材,事关钠电池的产业化进度。  去年,由于碳酸锂价格疯涨,钠电池凭借着钠元素广泛存在于大自然中,吸引了产业和资本的目光,国产化进度明显。  “去年钠电池厂家仅能使用来自日本可乐丽的硬碳负极(椰子壳路线),今年国内厂家生产的负极材料已经可以满足需求。”盘古钠电总经理吕江英表示,国产化提速的同时,也带来产业链的降本效应,国产硬碳负极价格仅为进口的三分之一,电解液从去年的十几万降至现在不到4万元一吨,正极材料下降40%。  “仅用了一年时间,钠电池价格相比起去年下降了50%。”吕江英谈到,整个产业链虽然还没完全成熟,但是已经放量,价格明显下降。钠电处于产业化的前夜  如果给目前钠电池发展阶段下个定义的话,吕江英认为是“产业化前夕”。  这是因为钠电池降本已是确定性事件,吕江英预估明年钠电池价格将进一步下降,盘古新能源目前钠电BOM成本达到每瓦时0.4元,明年3月盘古无锡基地投产,力争明年降到0.3元。  据不完全统计,国内已有宁德时代、孚能科技、比亚迪、中科海钠、鹏辉能源、易事特等多家企业竞逐钠电池。  据电池中国统计,今年上半年,中国钠离子电池规划产能超120GWh。如传艺钠电目前已具备4.5GWh产能;中科海钠2023年阜阳产线计划扩产至3-5GWh。  吕江英谈到,钠电池降本不只是电芯厂的事情,还有赖于三大主材的发展,钠电池供应链还不完善,预估正极材料价格下降20%,负极下降20%~30%,电解液下降30%。  他举了一个例子,钠电池正极若采用层状氧化物技术路线,在高电位情况下,会有产气的情况发生。如果缩减电池电压区间,电池性能有所提升,但是电池能量密度就会下降。“三大主材需要相互配合,钠电池才会跑得更快一些。”  除了材料选型外,虽说钠电池制造环节跟锂电池流程相差不大,但细节决定成败,诸如水分控制、配方摸索、极片干燥等环节都对钠电池性能息息相关。  除此之外,下游生态建设亟待发展,在吕江英看来,两轮电动车试错成本较低,原有的铅酸电池电动车存在大量的替代需求,钠电池有望率先应用,很有可能会率先从诸多场景中胜出。  钠电的低温性能和安全性注定其更适合一些特殊场景,比如东北或者温度低的地区建设储能,在这些场景中,锂电就没有明显优势了。  “锂电池的特点是能量密度高,钠电低温性能甩锂电‘一条街’,有机会占领北方市场,钠电零下20度到30度运行没有问题。”他补充道。  钠矿在大自然中储量丰富,价格平稳,不会出现疯涨疯跌的情况,这是与生俱来的优势,相反锂电池中的关键原材料,碳酸锂、钴、镍等价格大起大落影响终端的价格。  在完成Pre-A轮融资后,吕江英透露,目前公司正在进行下一轮融资。

作者: 林典驰 详情
description
总投资80亿元!为方能源贵州钠电正极+钠电池项目签约

10月16日,为方能源贵州大龙年产10万吨锰基钠离子电池正极材料项目开工暨贵州大龙年产20GWh钠电池电芯项目签约仪式举行。  此次开工、签约项目是由深圳为方能源科技有限公司投资。贵州大龙年产10万吨锰基钠离子电池正极材料项目,总投资20亿元,主要建设锰基钠离子电池材料生产线及相关配套设施,一期将建设年产8000吨/年钠锰氧化物(水系)正极材料、10000吨/年锰基层状氧化物(有机)正极材料、2000吨/年硬碳负极材料等钠离子材料自动化生产线。年产20GWh钠电池电芯项目,总投资60亿元,总占地1500余亩,分三期实施建设,全部建成投产后,年产值可达140亿元,年税收不低于4.2亿元,解决就业300人。

作者: 中国·蓄电池网 详情
description
钠离子电池磷碳负极材料受热捧 武汉固理新能源获天使投资

9月25日,光谷咖啡创投与业内高容量钠离子电池磷碳负极材料领域企业武汉固理新能源科技有限公司在光谷举办投资签约发布会,助推固理新能源再上新台阶。  武汉固理新能源科技有限公司是武汉理工大学教授及博士团队的创业项目,立志做钠离子电池核心技术推动者,拥有一批稳定从事新能源和新材料基础研究、小试与中试、测试与评估的中、高级专业技术团队。公司是专业从事新能源、新材料相关研发设备和基础材料研究的科技型公司,主营产品钠离子电池磷碳负极材料。  固理新能源创始人陈刚博士在接受记者采访时表示:“公司致力于钠离子电池磷碳负极材料产业化。在钠离子电池四大主材中,负极材料相对不成熟,硬碳虽最接近商用,但存在首效低、容量小和嵌钠电位过低易析钠的缺点。磷碳材料是将红磷以亚纳米尺度弥散于导电碳集体中,作为钠离子电池负极材料具有资源丰富、价廉、容量高、工作电位适中和阻燃等突出优点,也是唯一可在能量密度方面超越硬碳的负极材料。磷碳应用于钠离子电池负极,正如硅碳应用于锂离子电池负极,可提升钠离子电池25%的能量密度。我们开发的磷碳材料,具有成本低廉、容量高、循环和空气稳定性好、倍率特性优异等优势,有望成为第2代钠离子电池先进负极材料。本次签约可以让固理新能源再接再厉、精益求精、勇往直前。”  钠电能量密度和循环寿命是普通电池的数倍,具有低成本、高安全、高容量的特点。钠离子电池应用场景是低速电动车和规模储能,市场规模达到万亿,磷碳之于硬碳(钠电),相当于硅碳之于石墨(锂电)。固理新能源主要做的就是积极推进钠电负极材料的产业化,项目拥有表面原位转换和同素异形体结构转换控制两大核心技术,从而奠定了行业技术优势地位,已实现高容量(>1200 mAh/g)磷碳负极在全电池中稳定循环500次以上,基于钠电在能量密度和安全性等方面的优势,产品性能优良,未来市场空间广阔。  借助成熟的正负极材料体系和关键环节技术创新,武汉固理新能源科技实现了其电池产品综合性能的显著提升。产品实现了能量密度高、快充性能好、成本低、安全性能高的突出优势。接下来固理新能源会努力延长高容量钠离子电池循环寿命的同时,不断追求能量密度的有效提升,相信固理新能源将致力于在成本、性能等方面实现进一步突破,推动钠电负极材料的产业化和商业化应用。  光谷咖啡创投有限公司总经理李儒雄在签约发布会上表示,之所以看好并投资固理新能源科技:“首先项目市场大。钠电元年已开启,万亿市场,产业爆发在即,多方利好之下高能量密度储能技术也得到了政策助力。其次项目团队强、配合度高。项目核心团队来自武汉理工大学,武汉理工大学的材料学科在全国属于A+学科,技术支撑是非常雄厚的,拥有国家重点实验室,公司是武汉理工大学的优势学科的多名博士团队创业项目,团队稳定且技术力量很强,公司创始人兼总经理陈刚博士是武汉理工大学材料学博士,曾设计并管理运行3万吨/年新材料产线。武汉理工大学学科首席教授唐浩林担任项目首席科学家,是国家“万人计划”领军人才,被评为湖北省“产业教授”,希望唐教授的创业团队继续保持技术领先。还有就是今年是钠离子电池产业量产的元年,这个时候进入刚刚好。最后就是项目拥有超大的客户群体,维科技术、蜂巢能源、昌意钠电、超威电源、盘古钠祥、天合储能等都是公司的意向企业,客户的行业示范效应强。”李儒雄对于武汉固理新能源的技术实力和项目团队给予了高度评价,也看重这一领域的发展前景。  本次投资签约,双方将在技术研发、渠道整合、数字信息化、运营推广、品牌宣传等方面建立深入全面的战略合作关系,围绕高容量钠离子电池磷碳负极材料产业链及其上下游进行整合和宣传,依托交流平台,倾力打造电池领域新一代“明星”,助推互利共赢,深挖合作潜力,赋能产业升级,有望中流击水正当其时。

作者: 中国·蓄电池网 详情
description
“扬州造”钠离子电池供应全球知名车企

昨日,传艺科技发布公告称,公司控股子公司江苏传艺钠电科技有限公司于近日进入某全球知名汽车制造商的供应链体系,并获得其子公司订单,由传艺钠电提供应用于乘用车领域的钠离子电池产品。  总投资10亿元的传艺钠电及新材料一期项目于去年10月开工,今年3月底投入使用,致力于钠离子电池技术研发和产业链一体化布局。2023年被业内称为“钠离子电池”元年,传艺钠电产品率先进入全球知名汽车制造商的供应链体系,对于促进扬州乃至国内钠离子电池产业发展,提高我国钠离子电池产业竞争力,具有里程碑意义。  据了解,该全球知名汽车制造商总部位于德国,旗下拥有众多知名汽车品牌。“经过对方8个月的认证,传艺钠离子电池终于获得认可并达成合作。”昨日,传艺科技相关负责人接受记者连线采访时透露,传艺钠电近日正式进入其供应链体系并获得相关供应商代码。  相较于磷酸铁锂及铅酸电池,钠离子电池资源、成本、性能优势明显,成为当下新能源电池产业发展的一个风口,也吸引了众多企业抢道布局。  传艺钠电为何能脱颖而出,获得全球知名汽车制造商的青睐?传艺科技负责人介绍:“对方看中了我们钠离子电池产业链一体化布局所彰显的成本优势。”  实际上,传艺钠电的钠离子电池在送样下游客户后,反响普遍良好,已与多家客户签订销售订单,成为国内钠离子电池产业的一匹黑马。与此相应的是,传艺钠电一期项目原计划2GWh的电池生产产能,现已扩建至4.5GWh。  面对下游旺盛需求,为了抢抓市场机遇,加速产业化进程,今年3月,传艺科技发布预案,拟总投资50亿元用于钠电池制造二期5.5GWh项目,两期最终形成合计年产3.72万吨正极材料、4万吨负极材料、10GWh钠离子电池、15万吨电解液的钠离子电池全产业链一体化的项目。“目前,公司钠离子电池二期项目已开展厂房建设等前期工作。项目整体计划2024年底全部竣工投产,投产后年销售额约250亿元。”传艺科技上述负责人介绍。  “传艺科技从宣布进入钠离子电池领域以来,进展迅速,体现了公司对在该领域发展前景、竞争优势以及公司整体价值的充分信心。”市商务局有关负责人表示,传艺科技重大项目建设将带动扬州市钠离子电池产业链发展,提升扬州市新能源电池的科技创新能力和企业竞争力。

作者: 中国·蓄电池网 详情
description
钠离子电池不香了?

国内电池级碳酸锂价格一度跌破20万元/吨,市场随之对钠离子电池发展信心出现动摇。  近年来,锂价暴涨与锂资源紧张的恐慌,为钠离子电池快速发展创造了契机。但今年以来,国内电池级碳酸锂价格一度跌破20万元/吨,市场随之对钠离子电池发展信心出现动摇。  随着锂离子电池原材料价格回归理性,是否还有必要再发展钠离子电池技术?如何正确看待两种电池技术的关系?钠离子电池规模化应用还面临哪些亟待解决的问题?  碳酸锂价格是钠电价值试金石  据了解,钠离子电池的研究可以追溯到上个世纪80年代,几乎与锂离子电池同时起步,但受限于技术瓶颈其研究一度陷入停滞。直到2000年,硬碳负极材料的发现,才使得钠离子电池的研发再次活跃。经历了几轮诸如锂离子电池原材料涨价问题,钠离子电池价格低廉、无资源限制等优势逐渐凸显,作为锂离子电池替代技术路线获得快速发展。2021年,电池头部企业宁德时代发布第一代钠离子电池,迅速催热市场对钠离子电池的热情。据业内不完全统计,当前,从事钠离子电池研发布局的企业超过100家。  但市场的快速变化超出行业预期,今年,锂电池原材料价格出现断崖式下跌。市场担忧:如果碳酸锂价格继续下行,钠离子电池将丧失最大成本优势。  浙江青钠董事长王子煊在日前召开的高工钠电峰会上算了一笔账:碳酸锂价格为20万元/吨时,钠离子电池的边际成本领先24%左右;碳酸锂价格为10万元/吨时,钠离子电池的边际成本领先12%左右;若碳酸锂价格回归到5万元/吨,钠离子电池仅领先5%的边际成本。  星恒电源小电芯工程院钠电项目组长谈亚军也拿出一组数据,以钠离子电池正极、负极、电解液价格分别为3.5万元、2.5万元、1.5万元为基础,测算出钠离子电池和锂离子电池的成本交叉点是在碳酸锂价格为6.5万元/吨时。他认为,当碳酸锂价格下行时,钠离子电池主要成本占比的镍源也会相应下跌。长远来看,钠离子电池仍具有成本优势。  “碳酸锂60万元/吨的价格高位不可能长期持续,但价格并不是钠离子电池的核心竞争力。不同化学体系的电池技术有着不同特点,钠离子电池关键要找到其应用价值。”在中科海钠总经理李树军看来,碳酸锂价格某种程度上是钠离子电池产品价值的试金石,穿越产业周期是企业发展的必由之路。  尚未完成从“0到1”的突破  事实上,2023年一直被认为是钠离子电池的发展元年,不少企业宣布在这一年开启量产。今年2月,行业首台钠离子电池试验车搭载钠电池装车试验;3月,雅迪发布搭载钠电池的两轮车;4月,宁德时代宣布,其钠离子电池落地奇瑞车型。  不过,这还谈不上真正的应用。尽管钠离子电池可以兼容使用锂离子电池生产设备,但产业尚未形成健全的供应链。据悉,当前钠离子电池存在多条技术路线,比如,正极材料可分为层状过渡金属氧化物、聚阴离子型材料、普鲁士蓝(白)类化合物等;负极以软碳、硬碳材料应用为主。目前,钠离子电池没有统一的形态共识,影响量产速度。不同技术路线也使得钠离子电池的电压平台不同,迫使应用企业选用多型号逆变器来适配,研发更复杂的BMS电源管理系统。  设备制造方面,中集海中技术总经理邓明能坦言,钠离子电池产业化痛点很多,从实验室试产到量产还有较长一段路要走,其中一大难题便是负极涂布,尤其是负极涂布的干燥技术。钠离子电池负极目前多使用硬碳,其结构晶距大、空隙多,涂布干燥非常困难,锂离子电池负极遇到的所有问题还将在钠离子电池领域进一步放大,如干燥不均等。  李树军认为,钠离子电池应用面临最大问题是能量密度低,当前钠离子电芯能量密度为300Wh/kg左右,磷酸铁锂电池能量密度在360Wh/kg-380Wh/kg,前者还有较大技术进步空间。在他看来,钠离子电池产业现在远没有完成从“0到1”的突破,达到百吉瓦时的规模还需要3-5年时间。  需找到合适应用空间  海四达电源研究院院长苏金然指出,2022年,电池行业已进入太瓦时时代;2025年,市场规模会超过2TWh,到2030年将达到6TWh以上。在这个巨大市场容量中,锂离子电池不可能一统天下,会有其他技术路线作为补充。  “钠离子电池不能仅仅从价格上竞争,要找到长处、找到适合的领域。”谈亚军指出,钠离子电池具有长寿命、宽温区、高倍率、高安全、低成本、可与锂离子电池共线等优点,这才是产业发展真正原动力。钠离子电池向下可以替代铅酸电池,向上可作磷酸铁锂电池的补充。  易事特董长何佳同样认为,钠离子电池和锂离子电池会长期共存,只是不同阶段分工应用会有不同,有些领域必须用锂、有些可以用钠。比如,锂电不间断电源(UPS)迟迟没有大规模推广,原因在于大家对锂电安全担忧,银行、通讯运营商的电源基本还以铅酸电池为主。未来,钠离子电池有望替代铅酸电池,应用在UPS、数据中心、低速电动车等领域。  众钠能源首席科学家赵建庆进一步补充,支撑钠离子电池未来市场预期的基础还是成本。降成本主要有三方面:材料层面,包括正极、负极、电解液核心在内的材料需要整个产业链进行配套;电芯制造上,可以参照锂离子电池的极限制造,采用创新的制造设备;量产方面,要通过规模化降低成本。

作者: 沈蓄所新闻中心 详情
description
2MW/8MWh!国家能源集团低碳院全钒液流电池储能系统采购公开招标

2月1日,国家能源集团北京低碳清洁能源研究院发布全钒液流电池储能系统采购公开招标招标公告,拟采购一套全钒液流电池储能系统。2MW/8MWh全钒液流电池储能系统(简称储能系统或系统),由4个500kW/2MWh全钒液流电池储能模块组成(简称储能模块或模块)及相应的配套设备设施,并网电压等级为35kV,配套有消防、安全等设施。低碳院全钒液流电池储能系统采购公开招标项目招标公告第一章 公开招标  1.招标条件  本招标项目名称为:低碳院全钒液流电池储能系统采购公开招标,项目招标编号为:CEZB240100810,招标人为北京低碳清洁能源研究院,项目单位为:北京低碳清洁能源研究院,资金来源为自筹。招标代理机构为国家能源集团国际工程咨询有限公司。本项目已具备招标条件,现对该项目进行国内资格后审公开招标。  2.项目概况与招标范围  2.1项目概况、招标范围及标段(包)划分:.  2.1.1项目概况:  本项目建设的一套全钒液流电池储能系统,配置容量为2MW/8MWh,储能系统接入储能站35kV母线。  2.1.2招标范围:采购范围包括但不限于  2MWW/8MWh全钒液流电池储能系统(简称储能系统或系统),由4个500kW/2MWh全钒液流电池储能模块组成(简称储能模块或模块)及相应的配套设备设施,并网电压等级为35kV,配套有消防、安全等设施。采购范围涵盖以下内容:  (1)基于北京低碳清洁能源研究院的储能技术完成500kW/2MWh储能模块的详细设计和工程制图;  (2)基于北京低碳清洁能源研究院通过的储能单元详细设计方案,完成4台套500kW/2MWh储能模块及其配套系统的加工、装配及相关测试实验。储能及其配套系统包括但不限于升压变、储能变流设备(PCS)、电池管理系统(BMS)、储能单元、能量管理系统(EMS)、以及配套线缆等辅材。按低碳院的要求完成4台套500kW/2MWh储能模块及其配套设备设施的配件选择、结构设计和制造,提供完整图纸资料,完成设备出厂检测、包装、发运、现场交货等;  (3)完成2MW/8MWh储能系统的安装和调试。包括提交一次电气和二次电气设计方案和安装调试方案等,完成2MW/8MWh全钒液流系统所有设备的安装、接线(35kV(不含35kV)以下,含舱体接地及防火封堵)、调试、试验、试运行等工作,配合并网验收、消防验收等工作。;  2.1.3交货日期:  2024年6月30日前,完成项目验收。其中,  (1)2024年5月20日前,完成4台套500kW/2MWh储能模块及配套设备到达现场;  (2)2024年6月25日前,完成2MW/8MWh储能系统具备并网条件。  2.1.4交货地点:山东省烟台市国家能源蓬莱发电有限公司。  2.2其他:/  3.投标人资格要求  3.1资质条件和业绩要求:  【1】资质要求:投标人须为依法注册的独立法人或其他组织,须提供有效的证明文件。  【2】财务要求:/  【3】业绩要求:2021年2月至投标截止日(以合同签订时间为准),投标人须至少具有全钒液流电池储能系统集成项目容量不低于1MWh的供货合同业绩1份。投标人须提供能证明本次招标业绩要求的合同,合同扫描件须至少包含:合同买卖双方盖章页、合同签订时间和业绩要求中的关键信息页。  【4】信誉要求:/  【5】其他要求:投标人须为全钒液流电池产品制造商。  3.2本项目不接受联合体投标。  3.3本项目不接受代理商投标。  4.招标文件的获取  4.1凡有意参加投标者,购标前必须在国家能源集团(https://www.ceic.com)首页网页底部查找“生态协作平台”图标,点击图标跳转至国家能源集团生态协作平台,点击“物资采购”图标,完成国家能源集团供应商注册,已注册的投标人请勿重复注册。注册方法详见:国家能源集团生态协作平台→帮助中心→“统一客商门户操作手册”。  4.2购标途径:已完成注册的投标人请登陆“国家能源招标网投标人业务系统”,在线完成招标文件的购买。  4.3招标文件开始购买时间2024-02-02 09:00:00,招标文件购买截止时间2024-02-09 16:00:00。  4.4招标文件每套售价每标段(包)人民币第1包70元,售后不退。技术资料押金第1包0元,在退还技术资料时退还(不计利息)。  4.5未按本公告要求获取招标文件的潜在投标人不得参加投标。  4.6其他:/  5.招标文件的阅览及投标文件的编制  本项目采用全电子的方式进行招标,投标人必须从“国家能源招标网投标人业务系统”“组件下载”中下载《国家能源招标网投标文件制作工具》及相关操作手册进行操作,具体操作流程如下:  1)投标人自行登录到“国家能源招标网投标人业务系统”:http://www.chnenergybidding.com.cn/bidhy。  2)点击右上方“帮助中心”按钮,下载《招投标系统用户手册-电子标(投标人手册)》。  3)点击右上方“组件下载”按钮,在弹出的页面中下载“国家能源招标网驱动安装包”及“国家能源招标网投标文件制作工具”并安装。  注:本项目招标文件为专用格式,投标人须完成上述操作才可以浏览招标文件。  4)投标人必须办理CA数字证书方可完成投标文件的编制及本项目的投标,CA数字证书办理流程详见:国家能源招标网首页→帮助中心→“国家能源招标网电子招投标项目数字证书办理流程及须知”。  注:投标人需尽快办理CA数字证书,未办理CA数字证书或CA数字证书认证过期的,将导致后续投标事项无法办理。  5)投标人须按照招标文件要求在“国家能源招标网投标文件制作工具”中进行投标文件的编制。具体操作详见《招投标系统用户手册-电子标(投标人手册)》,其中以下章节为重点章节,请投标人务必详细阅读。  1.1--1.7章节(系统前期准备)  1.9章节(CA锁绑定)  2.5章节(文件领取)  2.9章节(开标大厅)  3.1章节(安装投标文件制作工具)  3.2章节(电子投标文件制作)  6.投标文件的递交及开标  6.1投标文件递交的截止时间(投标截止时间,下同)及开标时间为2024-03-04 15:00:00(北京时间),投标人应在投标截止时间前通过“国家能源招标网投标人业务系统”递交电子投标文件。  6.2逾期送达的投标文件,“国家能源招标网投标人业务系统”将予以拒收。  6.3开标地点:通过“国家能源招标网投标人业务系统”公开开标,不举行现场开标仪式。  7.其他  /  8.发布公告的媒介  本招标公告同时在国家能源招标网(http://www.chnenergybidding.com.cn)和中国招标投标公共服务平台(http://www.cebpubservice.com)上发布。  9.联系方式  招标人:北京低碳清洁能源研究院  地址:北京市昌平区未来科学城滨河大道9号院  邮编:102209  联系人:龙俊英  电话:010-57339807  电子邮箱:junying.long@chnenergy.com.cn  招标代理机构:国家能源集团国际工程咨询有限公司  地址:北京市东直门南大街3号国华投资大厦6层  邮编:100010  联系人:于绍晶  电话:010-58134609  电子邮箱:13707542@ceic.com  国家能源招标网客服电话:010-58131370  国家能源招标网客服工作时间:8:30-12:00;13:30-17:00(法定工作日)  国家能源招标网登录网址:http://www.chnenergybidding.com.cn

作者: 中国·蓄电池网 详情
description
全钒液流电池关键材料研究进展及展望

随着全球气候变暖和矿物燃料不断枯竭,人类亟需寻求洁净、可再生的新型能源来解决当前的能源危机。由于可再生能源具有较强的间歇性,光伏、风电等新能源具有不稳定、不连续和不可控的非稳态特征,严重威胁着电力系统可持续性及安全性。通过新能源发电技术与高效的大规模储能技术相融合,如何实现可持续能源供给及生态环境保护成为当前研究的热点。  目前,按照能量储存方式划分,可将能量储存分为机械、电磁及化学能量储存,其中机械储能主要包括压缩空气储能、抽水蓄能等。由于机械储能需要独特的地理环境,使得水力储能和压缩空气储能技术的发展受到了一定的限制;电磁能量储存主要包括超导及超级电容器能量储存,电磁储能存在能量密度低及成本高的缺点;化学能量储存主要包括锂离子电池、铅酸电池、全钒液流电池、钠硫电池等。当前,钠硫和锂离子电池存在安全隐患问题,亟需寻找一种新型的替代储能电池。  全钒液流电池因其易于实现规模化、无污染和高安全性等优点,成为当前大规模储能领域的研究热点和发展方向。  1.全钒液流电池结构及工作原理  全钒氧化还原液流电池(VRB,Vanadium Redox Battery)是1种利用电解液中不同价态的钒离子在电极表面发生的氧化还原反应,来储存和释放电能的一种电化学装置。VRB主要由电池板框、电极、质子交换膜、双极板、电解液和集流体等部件构成,其结构如图1所示。VRB的正、负极活性物质是固溶于硫酸中的钒离子。在工作过程中,利用1台循环蠕动泵把电解液注入蓄电池,在充电和放电的过程中,电解质始终是流动的。电池的总反应式和正、负极的反应式分别为式(1)、式(2)、式(3)所示。  2.全钒液流电池的优缺点  VRB在许多方面都比其他规模储能技术有更好的优势,其特征表现为:  VRB在电解液中充放电、不存在相态变化、不会出现断电及短路等问题;VRB的输出功率不依赖于其额定容量,其输出功率与电池堆的尺寸和数量有关,而额定容量取决于钒电解液的浓度和容积,所以二者均可以按照特定的需求进行灵活设计,并且可以较为容易的获得百万瓦特量级的规模;  由于VRB的正、负极活性材料均为钒组分,所以能够避免正、负极电解液的交叉污染,并且电解质溶液能够很容易地进行氧化还原反应且被重复使用,因此拥有较长的循环寿命(>10000次);  VRB在放电时无记忆效应,可以进行深度放电,即使100%放电也不会损坏电池;  由于VRB中的电解液为液态,其浓差极化较小,并且它的电极具有较高的反应性和较小低的活化极化,因此它的负载容量较大;  所用的部件原料廉价、容易获得,降低了系统的制造及维护成本。  目前,VRB面临的主要问题为:  ①受限于电解质,其比容量较低,体积较大;  ②电池在运转过程中,电解质是需要泵体加压促进其不断流动,导致其在压强较大时密封性差,在酸、碱及氧化剂等介质中易刻蚀,缩短了电池的使用寿命;  ③在使用过程中,在某一特定的温度下,五价钒会在电解液中沉淀,从而阻塞流道,影响VRB的正常运转;  ④二价钒的含量过少,对电解液的稳定性有较大的影响;  ⑤初期投资费用过高,尤其是质子交换薄膜。  3.全钒液流电池关键材料  目前,VRB已经完成由实验室阶段向工业化实际应用的转变,其工程化技术得到了快速发展,在世界范围内已经建立了多个不同功率等级的全钒液流电池储能示范系统,但是由于前期投资费用高昂,其关键核心材料还欠缺系统性和深入的研究,导致VRB能量密度偏低、容量快速下降及成本较高等问题难以解决,已成为制约该项技术规模化、产业化和实际应用的瓶颈。  3.1电解液  电解液作为VRB的能量存储介质,在电池的充放电过程中起着关键作用,其稳定性对VRB性能和循环寿命有很大的影响。为提高VRB性能,需要对电解液进行改进以提高其溶解度及稳定性。电解质是由具有不同价态的活性物质(钒离子)和支撑电解质(如硫酸、盐酸、甲基磺酸及上述混合物)构成的。  该电解质能够提供适宜的离子浓度,从而使电池能够稳定运行。支撑电解液的选择主要依据电化学反应动力学、电解液在电极-电解液中的溶解性以及活性电解液中的交叉污染情况。对普通的支撑电解质硫酸来说,它提供了1个质子,可以根据酸碱度改变电池的电势。  在VFB中,V(Ⅱ)/V(Ⅲ)氧化还原电对用作负极电解液,V(Ⅳ)/V(Ⅴ)氧化还原电对用作正极电解液。由于采用了2种可溶性电对,电极表面不会发生固相反应,也不会发生相应的形貌变化。以同一种元素的4个价态为活性离子对,有效解决了长期使用过程中活性物质的交叉污染问题。  当前,人们正在对VRB中的电解液展开研究,重点在于对它的生产工艺进行优化,如加入多种助剂和稳定剂,以获得稳定性高、浓度高、温度适应范围广及价格低廉的钒电解液。目前,关于VRB正极电解液组分的相关研究发现,室温下适合VRB正极电解质含量约为1.5~2.0mol/L的V₄+和3mol/L的H₂SO₄。然而,随着钒离子浓度的不断升高,正极电解液中将出现V₂O₅沉淀物,造成管道堵塞,严重时会导致电池失效。  3.2电极  VRB在电极表面进行电化学反应,对整个电池的能量效率和循环稳定性有很大的影响。当前,对电极进行改性的方法主要包括:氧化处理、氮化处理、酸处理、热活化、电化学氧化、无机材料涂层及金属沉积改性等。其中,高温激活与电化学氧化法是一种廉价、简单、温和、可控、环境友好的电极改性方式。  由于电解质中存在很强VO₂+和硫酸,因此,对VRB的电极材料提出了更高的活性、导电性和稳定性要求,同时还要求具备优良的机械特性和廉价等优点。  当前,采用的是以金属、碳及石墨为基础的3种新型VRB电极。金属电极(如铅、钛铂、金等)具有优异的力学性能和导电性,但其电化学可逆性能极差,成本较高,限制了规模化应用。将聚乙烯、聚丙烯等高分子基团与导电性炭材料复合而成的复合电极,由于其价格低廉,质量轻,加工方便,所以被认为是一种比较理想的VRB电极材料。  另一方面,碳基材料具有良好的电导率、抗腐蚀性和电化学稳定性,在VRB中得到广泛使用。在对碳基电化学材料的长期探索中,通过对碳基材料的深入分析,学者揭示了碳基电化学材料具有良好的导电性、耐腐蚀和耐高温等特性,并具有较大的比表面积,已成为最理想的VRB电极材料之一。  3.3双极板  双极板是VRB中的重要部件,尤其是大容量、高功率型液流电池系统。碳复合材料双极板是指将某些高分子材料与一定数量的碳结合在一起而形成的复合双极板,因其加工简单、成本低廉等优势,被认为是一种极具应用前景的VRB用集流体。  另外,由于碳质双极板的电导率较金属或石墨质双极板低,所以在充放电次数较少的情况下,由于电流密度不大,双极板中的碳不会被完全消耗,而是会在两极板之间留下一些空隙,而这些空隙会导致电流通过时产生大量的热,从而进一步使双极板的电阻变大。因此,制备具有高电导率和良好耐腐蚀性能的双极板成为VRB用集流体研究重要方向。  3.4质子交换膜  质子交换膜(PEM)作为VRB的核心部件,既可隔离电解液,又可以传输质子,保障电池完成充放电循环过程。因此,PEM对提高VRB的可靠性及性能具有重要意义。  因其化学稳定性好、质子传输性强等优势,全氟磺酸树脂(PFSA)构成的全氟磺酸膜被广泛应用于VRB系统。目前,关于VRB用隔膜的研究主要集中在提高膜的离子选择透过性和提高膜的稳定性。  在VRB中,常用的质子交换膜内部通常有亲水、疏水区域。这2种区域的分布对膜的离子选择、离子传导、力学、化学稳定性等性能有重要影响。  目前,国内外学者正积极探讨、优化这2种区域的分布,进而制备出高稳定性、高选择性的质子交换膜材料。  3.4.1质子交换膜研究进展  根据材料不同,市售的PEM大致包括4类:全氟磺酸型PEM、部分含氟型PEM、非氟型PEM及非树脂型PEM等。到目前为止,全氟磺酸类PEM在市场上得到了广泛的应用,其中最著名的就是美国杜邦公司在20世纪70年代开发出来的Nafion膜,因为这种薄膜的主链是碳氟化合物,因此具有较好的化学和热稳定性。  另一方面,加上侧链-SO₃H连接到碳氟主链上,由于F原子极强的电负性,-SO₃H附近的电子云密度大大降低,H+更容易从-SO₃H上解离,所以,全氟磺酸型PEM具有较好的质子导电性。Nafion膜的结构如图2所示,-SO₃H以共价键连接到碳氟骨架上,在水溶液中,-SO₃H可以被电离成固定的-SO₃-和自由H+。而且,-SO₃H还能将水分子聚集在一起,形成一片微区,当微区内的水分足够多时,这些微区之间便会相互连接,形成一条长距离的质子传输通道。目前普遍认为,Nafion膜符合上述离子簇网络模型,如图3所示。  除了美国杜邦公司生产的Nafion系列PEM外,其他国家研制的类似产品包括XUS-B204、Flemion膜等。尽管Nafion膜具有许多优点,但是存在着严重妨碍其进一步商业应用的缺点:Nafion膜的合成过程比较复杂,合成难度较大,成本较高,市场价格昂贵。  3.4.2质子交换膜研究方向  PEM决定着VRB的效率、输出功率、寿命和应用性能等。因此,对于VRB,研发一种具备卓越综合性能的PEM成为了迫切需求。在当前情况下,质子交换膜需从以下7个方面展开研究:  (1)提高PEM质子电导率,减小膜物理电阻,提高电池效率。  (2)提高PEM电子绝缘性,从而有效隔离正负电极,提高电池的效率。  (3)提高PEM阻隔性能,一方面减少自放电,降低能量损耗;另一方面可以提高电池的安全性。  (4)PEM具备较好的保水能力,在吸水后仍然能够维持所需尺寸的稳定性。因为水分子可以加速质子传输,而高度稳定的尺寸则需要膜的溶胀率低,以确保在PEM干湿状态之间无过度膨胀或收缩,避免裂纹和微孔的形成。  (5)提高热及化学稳定性,强化电池的抗氧化性和耐酸碱性,保持质子交换膜在复杂工况下性能稳定,以保证电池的使用寿命。  (6)提高机械性能,良好的力学性能是质子交换膜组装成电池的重要条件。  (7)降低PEM的材料和制造成本,促进PEM的更广泛应用。  4.结论与展望  太阳能、风能、波浪能等可再生能源较强的间歇性特征限制了光伏和风能工业化大规模应用。VRB因其固有的优势及宽泛的应用领域,非常适合大规模储能,可以实现电网削峰填谷、电力系统节能降耗。  目前,亟需在VRB中的关键材料方面开展基础理论研究,通过提高电解液、电极、双极板及质子交换膜等关键材料的性能获得专门针对VRB的专属材料,为VRB实现大规模商业化推广奠定基础。  (1)钒电解液通过提高钒离子浓度来提高VRB的比能量,但较高的钒电解液浓度势必会造成电解液粘度增大,传质过程受到抑制及电导率降低;较高浓度的在重放电过程中容易析出沉淀物,造成电极表面堵塞出现浓差极化现象;因此,钒电解液的可以围绕着增强电化学活性及性能稳定性方面开展深入研究。  (2)金属类的电极价格昂贵,耐腐蚀性能较差,可选择的种类较少,现在较为广泛应有的是石墨毡多孔电极,其成本较低、性能优异、耐腐蚀性能优,满足VRB的实际应用要求。石墨毡多孔电极在VRB中长期被压缩状态下充放电,容易产生局部的浓差极化造成烧毡现象,出现电极碳纤维丝断裂、表面材料剥落、堵塞电池板框内部流道等现象,需要在石墨毡多孔电极机械性能、抗腐蚀性能、电极改性等方面开展深入研究。  (3)纯石墨双极板制造成本较高、制备工艺复杂且易损毁,仅在实验室做研究使用;碳塑双极板材料便宜、制备工艺简单、韧性和强度较好在VRB中应用广泛;一体化双极板可以降低与电极间的接触电阻,易于大规模生产,已经成为研究热点。目前,研究双极板的主流方向是如何增强其强度和韧性的同时降低双极板的电阻率。  (4)Nafion系列膜钒离子渗透率及高昂的价格限制了其大范围推广应用,研究热点聚焦在非氟类质子交换膜的改性上,制备出阴离子膜、阳离子膜及非离子多孔隔膜等质子交换膜,但是,这类膜在化学稳定性上还存在缺陷,距离商业化依然有一定的距离。因此,性能优异、价格低廉、制备工艺简单的非氟高分子基离子交换膜和改性的多孔纳滤和超滤膜将会是未来钒电池隔膜的发展趋势。  (本文作者:中煤科工集团沈阳研究院有限公司、煤矿安全技术国家重点实验室高海)

作者: 高海 详情
description
液流电池加速产业化,新的万亿赛道已开启

最近关于液流电池的重磅信息层出不穷。  仅在十月内,全球首套兆瓦级有机液流电池和首套吉瓦级锌铁液流电池工厂接连在宿迁、珠海投产,液流电池正式进入规模化、产业化发展的时代。  液流电池储能独角兽企业如天府储能、纬景储能分别获得了数千万投资和50亿授信;永泰能源则出资700万美元认购了新加坡液流电池公司Vnergy合70%的股份。  科研端也有新突破:西湖大学王盼团队利用水系有机液流电池在充放电过程中实现了电化学碳捕。  这样看来,有人说今年是液流电池元年,也是恰如其分的。  早在2021年,国家发改委和能源局发布的《关于加快推动新型储能发展的指导意见》文件就特别提到,要坚持储能技术多元化,实现压缩空气、液流电池等长时储能技术进入商业化发展初期。  液流电池一直都是长时储能的“后备军”,有了政策的加持,液流电池的发展按下加速键,逐渐来到了“台前”。  液流电池是一种利用两种或多种溶解在液体中的活性物质,在离子膜两侧进行氧化还原反应来储存和释放能量的装置。前期碍于产业化困难,液流电池长期停留在实验室当中。  但在2022年,液流电池产业化取得突破性进展,兆瓦级产品量产交付,首个吉瓦时级别项目集采开标,大连液流电池储能调峰电站一期成功并网等诸多事件,业界看到了发展的曙光。  相比起磷酸铁锂等新型电池,液流电池其活性物质是单独储存在外部储罐中的液体电解质,输出功率和储能容量相互独立,可拓展性能良好,能够解决锂电池储能两者不可兼得的问题。图说:液流电池示意图来源:SolarReviews  而且,液流电池在充放电的过程中,不涉及物相的变化,因此循环寿命可达上万次,整体使用寿命可以达到20年或者更长时间。另外,因其水系的特质,一般不燃烧、不起火,安全性能突出,且环境友好。  根据其技术特点可以发现,液流电池和锂电池相比虽然能量密度较低,但其最大的优势在于可以满足大规模储能和长时储能的需求。图说:液流电池(铁铬、全钒)与其他电化学电池技术对比来源:知乎  储能的应用场景和需求多种多样,任何一种技术路线都不是唯一解,最重要的是从安全角度还是经济性角度合理配置和调整。  01.长时储能需求迫切  由于风、光发电的不连续性,在未来以可再生能源为主体的新型电力系统中,缺乏大规模的长时间、大容量储能技术支撑将会是转型过程中巨大的风险点。  如果新型电力系统中可再生能源的比例超过50%,储能设施必要需要具备十几个小时乃至几天的储能时长,满足吉瓦级别的再生能源并网、长时间削峰填谷的需求。  但锂离子电池目前的技术水平难以满足长时间、大容量储能的需求。  因此全球对于长时储能(充放电时间超高六小时)的技术越来越重视。  根据彭博新能源财经的数据,截止到今年9月,全球已经投产的长时储能达1.4GW/8.2GWh,而储备项目已经达到33GW/156GWh,其中,中国是最大的市场,占储备项目装机容量的92%。  据不完全统计,仅今年3—6月,我国在建及规划液流电池产线超过9条,产能规划合计超过8.2吉瓦,潜在年产值超过700亿元。  目前能满足大规模长时间储能的技术主要有压缩空气储能和抽水蓄能,然而上述两种受地形地理环境影响明显,无法在全国推广使用。因此,液流电池因其技术特点能够及时补位。  从产品分类看,液流电池按照电解液体系的不同可分为全钒、锌铁、锌溴、铁铬等20多种技术路线。  全钒液流电池是目前全球范围技术成熟度最高、商业化最快的液流电池路线。全钒液流电池利用钒离子化合价的变化来实现电能与化学能之间的转化。与其他电池相比,全钒液流电池具有本质安全性、保值率高、零成本无限增容和无二次污染等优点。  除了全钒液流电池之外,锌基液流电池也是主要液流电池中的一种。在取得技术突破后,锌基液流电池相比其他电池,具有成本低、能量密度高、安全性好、环境友好等优点,在大规模储能领域具有较好的应用前景。  而与上述无机氧化还原型液流电池相比,水系有机液流电池(AORFBs)采用的电解液则是具有氧化还原活性的有机分子水溶液,具有反应活性高(一般比无机氧化还原电对高2~3个数量级)且溶解度、可调性好,分子尺寸设计性强等特点,在能量密度、功率密度和循环寿命等方面与其它储能技术比优势明显。  02.液流电池工厂加速落地  最近在广东珠海投产的纬景储能“超G工厂”就是锌铁液流电池工厂,年产能超6吉瓦时,实现了从兆瓦级向吉瓦级产能的巨大跨越。  纬景储能在众多液流电池技术路线中,没有选择技术相对成熟的全钒液流电池,而是选择了“锌铁液流电池”。  其自主研发的新一代锌铁液流电池产品GP110,采用碱性水系电解液配方,不燃不爆、安全无毒,具备安全、寿命长等特点;原材料(包括锌和铁)充足且平价易得,成本优势和降本空间显著。图说:锌铁液流电池GP110来源:纬景储能  除了广东珠海之外,纬景储能目前还在山东、湖北、江西加速推进建设和规划锌基液流电池“超G工厂”项目。  而全球首套兆瓦级水系有机液流电池在江苏宿迁投产,则宣告了国内首家有机液流储能电池企业正式迈入大规模储能赛道。图说:水系有机液流电池投产启幕来源:宿迁时代储能  水系有机液流电池作为新型储能技术,不同于全钒、铁铬等液流电池使用强酸作为支持电解液,该技术使用中性NaCl水溶液作为支持电解液,产品更加安全环保、综合能效更高、使用寿命更长。  此外,有机氧化还原分子环境友好、原料丰富且制备较容易,可以低成本生产,适于大规模应用。  宿迁市近日印发了《宿迁市支持新型储能产业发展的若干政策措施》,在具体的支持政策中,宿迁市拿出了单个企业最高2000万元的补贴,并在企业成果转化、核心技术攻关、高新技术企业认定等方面给予了较大力度的支持,以此加快项目招引建设。  良好的政策为企业放开手脚积极竞逐新赛道、努力做大做强新型储能产业提供了坚实的基础。  03.投资人闻风而动  过去两年国内储能“爆火”,推动锂电池储能企业估值水涨船高,投资人难以抉择。  有业内投资人士坦言,“自己已不看源网侧的电化学储能项目,一方面是估值过高,一、二级市场倒挂;另一方面,源网侧储能已经是一片红海,价格战压薄企业利润空间。”  面对可选标的日益减少,一级市场的投资人开始将目光转向储能的细分赛道,而长时储能中的液流电池则被认为是潜在的投资机会。  有行业观察者表示,在双碳目标之下,新型储能已经成为下一个万亿赛道。  前两天天府储能刚完成数千万元天使轮融资,由中小企业发展基金(成都)交子创投基金(GP:东方富海)领投,成都科创投集团和成都绿色低碳集团联合发起设立的成都梧桐绿碳基金跟投,康桥创投担任独家财务顾问。  而天府储能选择的赛道就是全钒液流电池,本轮融资将用于全钒液流电池技术研发、产能布局和团队扩建。  纬景储能作为国内首家锌铁液流电池领域的独角兽,自2022年以来经历过数轮融资,目前总募资额超10亿元,投资方包括高榕资本、松禾资本、大横琴集团、国合新力等,所募资金聚焦于提升纬景储能锌铁液流电池的产能,进一步降低储能电池的成本。  被永泰收购70%股份的新加坡液流电池公司Vnergy也是一家具备全钒液流电池储能先进技术研发能力的国际化科技公司。  Vnergy拥有创始人王庆教授在新加坡国立大学发明的全钒液流电池固态储能等技术专利使用权,致力于新一代高密度全钒液流电池储能技术和产品的研发,较目前应用的全钒液流电池产品在热稳定性、能量密度和成本方面均具有明显的行业领先优势。  永泰能源表示,本次通过新加坡德泰储能投资控股Vnergy,使公司进一步拥有了行业领先的新一代全钒液流电池储能技术,将加快实现公司在全钒液流电池储能领域的技术迭代。  不过,现阶段液流电池投资成本还是相对较高。有行业专家总结道,锂电池和液流电池可以互为补充:  “建议大型储能项目中一部分采用液流体系,可以提升项目的整体安全性。另外,由于锂电的循环寿命比液流电池短,当部分锂电的循环寿命到期时,可以提高液流电池的比例,最大限度分摊风险,激活液流电池产业链。”

作者: Yinyin 详情
description
最佳持续时间约为8至12小时!ESS公司交付3MWh铁液流电池储能系统

据外媒报道,长时储能系统供应商ESS公司日前宣布,该公司已向加州电力供应商萨克拉门托市政公用事业公司(SMUD)交付了6个长时储能系统,总储能容量为3MWh。  这6个储能系统是ESS 公司去年宣布的一项更广泛协议中首批交付的储能项目。根据这份协议,ESS公司将向SMUD公司提供高达200MW/2GWh铁液流电池储能系统。该公司估计,这些储能系统每年将减少28.4万吨碳排放量。  SMUD公司首席零碳官Lora Anguay表示,10至12小时持续时间是SMUD公司采用铁液流电池储能系统的重要因素。她补充说:“它确实补充了SMUD公司正在考虑开发的可再生能源发电设施,其中包括公用事业规模太阳能发电场和用户侧太阳能发电设施。”  SMUD公司制定了到2030年提供完全碳中和电力的目标,与加州2045年实现100%零碳电力的目标相比提前15年。该公司在2020年年中批准的气候紧急声明中包括了这一承诺。SMUD公司在这一年还与ESS公司就部署长时储能系统达成协议。  Anguay表示,ESS公司交付的第一套储能系统已经安装并连接到SMUD公司培训设施的系统中。现在,该公司将专注于将这些储能系统整合到其清洁能源组合中。一旦这些储能系统投入使用,该公司还将对员工进行电网运营和电池储能系统调度方面的培训。  SMUD公司计划在今年秋天之前让这些电池储能系统完全投入使用。根据该公司与ESS签署的协议,下一批电池储能系统预计将在明年年底开始交付。  ESS公司负责业务开发和销售的高级副总裁Hugh McDermott表示,铁液流电池技术为电力供应商提供了一定的优势,包括安全方面。  他说,“因此,所有与锂离子电池安全相关的认知和风险并不真正适用于我们的案例,”  就持续时间而言,该储能技术目前的最佳持续时间约为8至12小时。  McDermott表示,尽管为了减缓气候变化的影响、可再生能源的采用和电气化的发展等多种趋势正在推动对长时能源解决方案的需求,但在为这些能源资产提供适当补偿方面,美国政府还有更多的工作要做。  他指出,“即使在长时储能需求得到广泛认可的加州,对于像SMUD这样的公司以及建设和运营这些项目的私人投资团体来说,仍然需要进行一些市场改革或提供一些激励措施,以更好或更适当地长时储能系统提供补偿。”  他补充说,加州现在是一个资源充足的市场,运营的电池储能系统的持续时间大多是4小时,但对一些用户来说,投资8小时电池储能系统的回报还不够高。至少对于哪些仍处于创新初期的新技术和大规模生产来说是这样。  ESS公司和SMUD公司还打算在萨克拉门托建立一个储能制造“卓越中心”,该中心将与该地区的教育机构合作,提供劳动力培训。

作者: 刘伯洵 详情
description
2020年以来主要液流电池签署项目汇总

新型储能政策推动液流电池进入商业化前期,国内装机规模未来2年有望实现成倍增长,并在大规模可再生能源并网与电网调峰领域率先爆发。2021年以来,锂离子电池上游原材料价格暴涨与产能紧缺,暴露出过度依赖单一技术路线的风险:锂电池下游需求快速释放造成上游价格上升,产能供应不足,导致储能与电动车、两轮车、智能家居等下游“抢电池、抢原料”的情况发生。另外,储能锂电池产品寿命不长、火灾爆炸等事件时发等问题也影响了锂电池储能产品的应用。2021年7月,国家发改委和能源局发布《关于加快推动新型储能发展的指导意见》,文件提出要坚持储能技术多元化,推动锂离子电池等相对成熟新型储能技术成本持续下降和商业化规模应用,实现液流电池等长时储能技术进入商业化发展初期。液流电池等新型储能电池的政策春天正逐步来临。液流电池在大规模储能的优势:超长循环寿命、高安全稳定性、绿色环保液流电池通过不同电解液离子相互转化实现电能的储存和释放。与传统二次电池相比,其电极反应过程无相变发生,可以进行深度充放电,能耐受大电流充放。与其他电化学储能技术相比,液流电池最突出特点就是循环寿命特别长,最低可以做到10000次,部分技术路线甚至可以达到20000次以上,整体使用寿命可以达到20年或者更长时间。其次,液流电池的储能活性物质与电极完全分开,功率和容量设计互相独立,便于模块组合设计和电池结构放置;储存于储罐中的电解液不会发生自放电;电堆只提供电化学反应的场所,自身不发生氧化还原反应;活性物质溶于电解液,电极枝晶生长刺破隔膜的危险在液流电池中大大降低;同时流动的电解液可把电池充电/放电过程产生的热量带走,避免由于电池发热而产生的电池结构损害甚至燃烧;最后,液流电池的电解液可以实现回收再利用,相比铅蓄和锂离子电池,不会对环境造成污染。产品分类看,液流电池按照电解液体系的不同可分为全钒、铁铬、锌溴等不同技术路线。全钒液流电池是目前商业化最为成熟的液流电池路线。首先,全钒液流电池经过多年示范考核,其大规模储能的工程效果已得到充分的验证,其他路线由于示范时间短,仍需要经历较长的验证周期;相比铁铬等技术路线,全钒液流电池的电解液、隔膜、膜电极等原材料供应链已经初步成型,国产化进程不断加快,已能够支撑起开展百兆瓦级的项目设计与开发,其产业配套更加成熟;最后,全钒液流电池系统(10MW-4小时储能配置)的单瓦时成本已经能够控制在2-3元的水平,已经具备初步商业化应用的条件。铁铬液流等路线虽然具备更大的降本空间,但从技术瓶颈突破、产业链培育和产能建设的进度看,未来五年其他液流电池路线的成熟度和成本水平仍难与全钒液流电池相媲美。液流电池与其他电化学电池技术对比资料来源:公开资料,高工产研新能源研究所(GGII),2021年10月综上,液流电池是更适合大规模、长时间储能场合的储能电池技术路线。从产业配套成熟度看,全钒液流电池将是未来五年主流的液流电池技术路线。随着装机规模的快速提升,液流电池的储能性能优势将会越发突出。2020年以来市场回顾:签订项目数创新高,产业链企业扩产加速需求端看,目前液流电池电化学储能装机量占比偏低,无论是全球还是中国,比例均低于1%。但2018年以来液流电池签订项目数和装机项目数均创新高,市场热度明显提升。以国内为例,根据不完全统计,仅从2021年到2021H1,国内规划的液流电池装机量超过6GW,容量超过20GWh。预计2022-2023年该批项目将会密集投运,整体规模将在2021年的基础上翻番,届时有望为国内液流电池市场带来巨额订单需求。2010-2020年全球液流电池装机量增长情况(MWh)资料来源:美国能源部2020年以来主要液流电池签署项目资料来源:公开资料、高工产研新能源研究所(GGII)整理.,2021年10月供给端看,根据GGII产业调研,大连融科、北京普能世纪、乐山伟力得为代表的电池企业,苏州科润、攀钢钒钛为代表的上游配套企业自2018年以来陆续融资扩产,为即将爆发的液流电池市场屯兵备粮。2021年国内主要液流电池产业链扩产项目(部分)资料来源:公开资料、高工产研新能源研究所(GGII)整理.,2021年10月现阶段液流电池市场规模较小,整体竞争格局尚未全面打开,大连融科与北京普能世纪涉足液流电池时间较长,其凭借着电堆产品迭代能力、供应链整合能力和MW级液流电池项目设计运维能力暂时处于国内领先地位,其装机规模也遥遥领先国内其他同行。但随着其他新进入者的加入与扩产项目的完成,未来市场竞争格局仍将存在较大的变数。产品技术端看,液流电池最为诟病的是其能量密度偏低,生产成本偏高。要推进液流电池储能技术的普及应用,还需要将电堆的功率密度、能量密度和转化效率再提升一个层次,从而降低电池的成本,提高其可靠性和稳定性,这是行业已经达成的发展共识。GGII预测未来5年,液流电池的产品技术发展将重点围绕着电堆结构设计的数值模拟仿真、更高效低成本电堆原材料(离子交换膜、双极板和碳毡等)、高功率密度电堆开发和电解液体系创新等四大方面开展。"十四五"储能液流电池规模预判:2025年全钒国内装机有望突破1GW随着各地液流电池储能示范项目落地并获得技术验证,"十四五"期间将是液流电池从定点示范走向推广的重要机遇期。高工产研新能源研究所(GGII)预测,"十四五"期间全钒液流电池凭借着更为成熟的产业配套和产品技术、更低的初次投入成本,将成为主流的液流电池技术路线。2025年全钒液流电池国内装机量有望突破1GW,新增的装机量主要来源于电源侧的可再生能源并网和电网侧的削峰填谷两大应用领域。增长的驱动力主要包括:1)新型储能政策号召下,国电投、华能、华润等能源央企加快投资液流电池等新型储能示范项目,推动液流电池装机量上一个台阶;2)大连融科、普能等国内产业链企业扩产项目投产,带动电解液、电堆产业链配套规模扩大,制造成本进一步下降;3)国内电价市场化改革持续,取消工商业目录电价、扩大峰谷电价差等电价改革措施在国内逐步落地,增强市场对不同储能技术路线的包容性和液流电池商业盈利性;4)锂离子电池安全隐患和储能时长有限缺陷使液流电池得到新的成长机会。为全面了解储能液流电池供求发展、技术路线、企业布局、未来前景等状况,高工产研新能源研究所(GGII)通过实地走访、电话调研、参考公开资料等途径获取了大量的行业信息并进行深度分析,最终形成《2021年中国储能液流电池市场调研分析报告》。报告共分7章,从储能细分领域(电源侧、电网侧和用户侧)、储能液流电池需求规模、竞争格局、产品与技术、重点企业、风险与建议等方面,为想要了解储能液流电池从业者提供全面的行业数据和分析报告。数据范围说明●本报告数据更新至2021年6月。●本报告数据以中国大陆地区数据为主,少量涉及全球其他地区数据。

作者: 沈阳蓄电池研究所新闻中心 详情
description
钒电池产业链深度解析

在“碳达峰、碳中和”背景下,以风电光伏为主的清洁能源将逐渐取代以煤炭、石油为主的化石能源。由于风电、光伏间歇性发电的特点,储能正在从过去的“可选项”变为发展新能源过程中的“必选项”。#钒电池#当前储能相关支持政策推出速度显著加快。2021年7月15日,国家发改委、国家能源局正式印发《关于加快推动新型储能发展的指导意见》,明确到2025年新型储能装机规模达30GW以上,未来五年将实现新型储能从商业化初期向规模化转变,到2030年实现新型储能全面市场化发展。文件提出要坚持储能技术多元化,推动锂离子电池等相对成熟新型储能技术成本持续下降和商业化规模应用,实现液流电池等长时储能技术进入商业化发展初期。目前主要的液流电池包括铁铬电池、锌溴电池及全钒电池等。其中,全钒液流电池是目前研究和应用最广泛的液流电池技术,其十分适合作为储能电池,尤其是在光伏、风电等新能源领域。以钒电池为代表的液流电池,2019年装机规模为20MW,2020年装机规模达100MW,据不完全统计2020年以来钒电池项目,装机量已经超过6GW,容量超过20GWH。按照《关于加快新型储能发展的指导意见》政策制定目标,2025年累计实现新型储能30GW装机量,钒电池渗透率20%+,当前渗透率为1%左右,由于光伏、风电等将带动储能行业高速发展,钒电池未来发展前景广阔,2021至2025年有望是钒电池渗透率提升的第一阶段爆发期。钒电池有望成为储能行业大发展赛道上的新星。钒电池的工作原理:资料来源:UET钒电池全称为全钒氧化还原液流电池(Vanadium Redox Battery,VRB),为液流电池的一种,是一种基于金属钒元素的氧化还原的电池系统,其电解液是不同价态的钒离子的硫酸电解液。从应用领域来看,钒液流电池当前已实现在智能电网、通信基站、偏远地区供电、可再生能源及削峰填谷等项目中的应用。全钒液流电池,寿命长、规模大、安全可靠的优势尤为突出,可用于建造千瓦级到百兆瓦级储能电站不易燃烧,可实现100%放电,而不损害电池,成为规模储能的首选技术,在调峰电源系统、大规模风光电系统储能、应急电源系统等领域具有广阔的应用前景。钒产业链上游:资源端储量丰富钒在地壳中为第17种常见元素,在地壳中的含量为0.02~0.03%,分布广泛。钒常以钒铁、钒化合物和金属钒的形式广泛应用于冶金、宇航、化工和电池等行业。钒很少形成独立的矿物,主要赋存于钒钛磁铁矿、磷酸盐岩、含铀砂岩和粉砂岩中,此外还有大量的钒赋存于铝土矿和含碳物质中(如石油、煤)。绝大多数的钒供应来源于共伴生矿床:钒产量中大约有71%来自钒钛磁铁矿炼钢后得到的富钒矿渣,18%直接来自钒钛磁铁矿,二者合计达到89%,其他的钒来自钒铀矿、含钒燃油灰渣、含钒石煤、废化学催化剂等等。钒主要以伴生元素赋存于钒钛磁铁矿中:资料来源:USGS全球钒矿储量主要集中在中国、俄罗斯、南非,中国储量占全球的43%。中国的钒矿产量占全球62%。2020年全球钒静态开采年限达到253年,相比于其他金属20-50年的静态开采年限,钒的资源十分充足,其资源储量完全有能力保障需求的数量级增长。中国的钒矿产量占全球62%:资料来源:USGS, 行行查国内钒资源主要以钒钛磁铁矿共伴生存在为主,分布区域主要有四川攀枝花地区、河北承德地区和辽宁朝阳地区。从钒储量来看,四川攀枝花地区的钒资源最为丰富,攀枝花市境内钒钛磁铁矿保有储量达237.43亿吨,其中钒资源储量达1865万吨,约占全国储量的62%,攀钢钒钛是国内最大的钒产品生产商,2020年公司钒产品产量占国内产量的18.75%。具备钒制品(折合V2O5)产能2.2万吨/年,外加托管的西昌钢钒的产能1.8万吨/年,公司实际控制的产能达到4万吨/年。我国主要钒生产企业还包括河钢承德钒钛新材料、川威特殊钢、四川德胜集团钢铁、承德建龙特殊钢等。经历产能出清过后的钒行业集中度提升,竞争格局优化,龙头企业定价权进一步提升。攀钢钒钛行业龙头地位得到强化与巩固,定价权得以进一步提升。钒产业链下游:钢铁为主要应用领域,储能需求高速增长钒的下游包括钢铁与铸造、钛合金、化工以及储能,钒的应用集中在钢铁领域,占比达到85%。储能方面则被用在全钒氧化还原液流电池中。根据Roskill,得益于对螺纹钢标准的执行,中国的钒使用强度已经超过了世界平均水平,正在超发达国家迈进。到2030年,全球钢铁对钒的需求将达到约136000吨,年均复合增长率达到2.7%。“双碳”背景下钢铁行业对钒的需求增量有限。随着储能的高速增长,钒电池有望带动钒需求呈现爆发式增长。Roskill预测到2030年,VRFBs的钒需求将以约56.7%的复合年增长率增长。世界银行预测,到2050年,单是储能领域的钒需求量就可能达到2018年全球钒产量的两倍。钒电池与锂电池相比的优劣势从成本端来看,与锂电池相比,钒电池最大的劣势就是成本。随着消费电子和新能源汽车对锂电池行业的拉动,锂电市场规模急剧扩大,技术不断进步,加上规模效应,带来成本的大幅下降。资料来源:CNKI, 行行查由于尚未规模化商用,且受制于设备、产能以及高额的前期投入,目前钒电池成本约为锂电池的2-3倍。以当前集装箱交付的价格(含电池包、温控系统、换流系统、消防系统、监控系统等),目前钒液流电池成本达3-3.2元/Wh,对比目前储能锂离子电池成本约1.2-1.5元/Wh,钒电池仍面临巨大的价格压力。全钒液流电池储能系统由电堆、电解液、管路系统、储能变流器等组成,其中电堆和电解液成本占系统总成本的85%左右。随着政策推进,钒电池形成规模化、集群化产业后,电池成本有望进一步下降。全钒液流电池关键技术:资料来源:《全钒液流电池》,行行查相比锂电池,安全是钒电池最大的优势。与目前储能电站的主流电池——使用非水电解液的锂电池不同,由于全钒液流电池电解质离子存在于水溶液中,发生过热、爆炸的可能性大大降低,液流电池的安全性能让其在电池领域脱颖而出。另外,不同于锂80%供应在海外,钒的供应大约50%在国内,资源不会受制于人。钒的需求结构一直相对稳定,90%来自钢铁,储能目前只占1%。但是随着储能进入爆发期,2025年占比有望超过15%,2030年有望超过30%。正如2015年的锂钴和2018年的镍的发展格局,新的需求领域带来了新的成长空间。随着储能行业的快速发展,钒产品未来的需求空间打开,钒有望成为继锂钴镍之后能源金属。钒电池放电过程:资料来源:北京普能从钒电池的历史发展沿革来看,钒电池相关研究源于1984年UNSW对2/3价与4/5价钒离子电对在氧化还原电池中的应用,并于1988年开始进入工业研发阶段。1995年,中国工程物理研究院电子工程研究所从率先在国内开始钒电池的研制。先后研制成功了500W、1000W的钒电池样机,成功开发了4价钒溶液制备、导电塑料成型及批量生产、电池组装配和调试等技术。2002年,钒钢龙头企业攀枝花钢铁公司以深化资源利用为目的,与中南大学合作介入了钒电池的研发。2009年,中国普能实现对全球最大钒电池公司VRB Power Systems公司的资产收购,包括其拥有或控制的所有专利、商标、技术秘密、设备材料等。此外,VRB PowerSystems公司的核心技术团队加入合并后的公司。资料来源:行行查从钒电池市场格局来看,目前钒电池市场体量较小,龙头格局未显,产业仍处于发展初期。目前全球范围内研发和制造企业主要包括日本住友电工SEI、大连融科、北京普能、美国UniEnergyTechnologies等。国内钒电池生产企业主要为北京普能、大连融科、武汉南瑞(国网英大子公司)、上海电气及伟力得。根据国家发改委、国家能源局发布的《关于加快推动新型储能发展的指导意见》所制定的目标,到2025年新型储能装机规模将达30GW以上,与目前的装机量相比仍有巨大的空间。钒电池由于其寿命较长,安全性较好,其在储能领域的渗透率将稳步提升,2025年钒电池在储能领域渗透率有望达到15%-20%。国家能源集团北京低碳清洁能源研究院储能技术负责人刘庆华表示:“十四五”时期,我国全钒液流电池将迎来非常好的大规模推广时机。随着各地全钒液流电池储能示范项目落地并获得技术验证,未来5年内预计将是全钒液流电池从成熟走向推广的重要窗口期。”

作者: 沈阳蓄电池研究所新闻中心 详情

视频系统 更多

  • description 819电池节丨为行业加油,为梦想添能

供应信息 更多

  • description 电动堆高车电池4VBS280 24V 电动搬运车电池
  • description 电动叉车电瓶4PZS620 80V叉车蓄电池
  • description 叉车蓄电池8PZS480 48V电动叉车电瓶
  • description 牵引用铅酸蓄电池堆高车电池搬运车电池8PZB480叉车电瓶

求购信息 更多

品牌推荐