沈阳蓄电池研究所主办

业务范围:蓄电池检测、标准制定、《蓄电池》杂志、信息化服务

您现在的位置:首页 >> 新闻中心
联系电话:

新闻中心

description
日本研发出厚度不到1毫米的可弯曲电池

日本山形大学3日宣布,开发出了超薄柔软弯曲的锂离子电池,厚度不到1毫米。报道称,研发的超薄可弯曲的锂离子电池使用了固体化后的凝胶状电解质。该产品非常的薄,厚度不到1毫米,可折叠使用。据了解,超薄可弯曲的锂离子电池是日本山形大学产学合作准教授森下正典开发的。此前森下正典也有过薄膜电池的开发事例,但最终的电池不能充分充电。此次在凝胶材料上进行研究,最终达到了实用化水平。使用凝胶状电解质锂离子电池的优点是不存在起火或漏液的危险,而且切断之后也可以使用。森下正典表示这项开发耗时4年,起初与企业进行了2年的共同合作研究。可弯曲的锂离子电池可以用于多种用途,比如手表的腕带部分等。最后,据报道称今后森下将与制造商进行量产和降低成本的研究,力争在2年内在可穿戴电子产品上看到它的身影。原标题:日本研发出厚度不到1毫米的可弯曲电池

作者: 沈阳蓄电池研究所新闻中心 来源:IT之家
description
明年将面临大规模更新 新能源汽车的旧电池该去哪

新能源汽车缓解了汽车尾气对空气质量的压力。不过,新能源汽车的电池“退役”后如果不能妥善处理,有可能造成新的污染。江苏正探索建立新能源汽车动力蓄电池回收利用体系,通过促进产业合作、政策激励回收利用等方法,促进电池回收利用。我国是全球新能源汽车产销大国。2019年1—11月,我国新能源(4.730,-0.04, -0.84%)汽车产销分别完成109.3万辆和104.3万辆,同比分别增长3.6%和1.3%。经过近年来的爆发式增长,目前,新能源汽车动力蓄电池将进入规模化退役期。预计到2020年,我国退役电池累计约为25吉瓦时。如此数量的电池退役,如果不实施有效的管控,势必将造成严重的环境污染和资源浪费。作为全国新能源汽车动力蓄电池回收利用试点地区,到2020年,江苏全省将基本形成新能源汽车动力蓄电池回收利用体系,重点地区新能源汽车动力蓄电池基本回收利用。准确回收:启动溯源管理,实施全程监管怎样才能“找到”退役的蓄电池?如何保证电池准确地回收到位?江苏省工业和信息化厅节能与综合利用处副处长胡正新坦言,电池是否能收得回来,是各地普遍遇到的一大挑战。目前,全国已有27家新能源汽车生产企业在江苏省设置了698个回收网点,但真正从回收网点回收的电池寥寥无几。如果在保修期内,客户有更换电池的需求,会主动联系汽车生产企业;如果在保修期之外,情况则比较复杂。“按照规定,汽车生产企业是电池回收的责任主体,负有监管责任,但是,退役电池所有权在终端客户手里,我们没有处理权。”南京一家电池回收公司的相关负责人许寒雪告诉记者,如果退役电池还有可用之处和利润空间,终端客户并不一定愿意将其交给车企处理,往往有自己的考虑。商用车客户以国有公交公司为主,对回收退役电池比较配合。私人购买的乘用车,其动力蓄电池追踪回收起来更为困难,要一对一沟通。“售卖车辆时,会在协议中加入一条:客户有配合动力蓄电池回收的责任。不过,即便如此,也没有约束力。”许寒雪说。胡正新介绍,由于退役电池属于一般的工业固废,回收没有特别门槛,只需有正常资质即可。除了负有电池回收主体责任的汽车生产企业之外,还有专门的回收企业可以回收。然而,如果回收后的退役电池没有用到正规渠道,例如制成了小型充电宝等,不仅存在安全隐患,而且也会从监管的视野中消失。去年7月31日,新能源汽车国家监测与动力蓄电池回收利用溯源综合管理平台在北京启动。该平台意在通过信息采集与管理等功能,实现动力蓄电池产品全生命周期监管。业内人士认为,这是实施新能源汽车动力电池溯源管理的关键一步,对有效推动电池回收利用具有重要意义。“当前的第一步是由车企将电池回收信息补录到这个平台上,这是构建全面有效监督管理的基础。”胡正新介绍,以此为契机,要进一步厘清各个主体之间的回收责任、增强全社会的回收意识。同时,也要加快和优化回收布点,提高回收的便捷性与可操作性。此外,江苏省相关主管部门也将加大对车辆生产企业、回收企业的监管力度,包括设计出台通报措施、信誉体系、奖惩方法等。梯次利用:因地制宜实施,企业合作发力电动玩具上不能用的电池,放在遥控器里却可以继续使用。同理,新能源汽车动力蓄电池容量衰减至80%以下时,虽不能完全满足汽车动力需求,但可以用于其他领域,这就是梯次利用。在新能源汽车动力蓄电池回收利用的试点企业——中国铁塔江苏分公司,运维部动力主管郭翔告诉记者,动力蓄电池由一个个小电芯组成,它们串联成各种规格的模组,再通过串并联组成电池包。使用若干年后,电池包容量会逐步衰减,无法在汽车上继续使用。如果将电池包还原成模组,再经过重组和检测,符合通信基站所需的大小尺寸和电压等级,便可以供通信基站“备电”使用,即在停电后用来供电。2018年4月以来,江苏全省使用梯次电池9600余组,约60兆瓦时,消纳退役动力蓄电池600吨,替代铅酸电池约1800吨。中国铁塔江苏分公司计划8年内替换全部铅酸电池,年需求量达200兆瓦时以上,可消纳退役动力蓄电池2000吨,替代铅酸电池约6000吨。目前,很多企业在积极探索动力蓄电池梯次利用的新途径,国网江苏综合能源服务有限公司将其用来“储能”。由于电费实施峰谷分时计价,供电企业需要在晚上充电储能,白天再将电力释放出来,这样能为客户节约大量电费。目前,该公司在南京江北新区建设45兆瓦时的梯次电池储能电站项目,将于明年上半年投产。该项目充放一次,相当于180个家庭一个月的用电量。在郭翔看来,最理想的状态是,实现退役电池就地转化。“退役电池中仍余部分能量,对运输车辆、路面颠簸程度、运送中的温度等均有一定要求,同时,电池重量大,运送成本昂贵,因此,最好是在本地实现梯次利用。”据郭翔介绍,在回收重组和梯次利用等环节,江苏已基本具备了本地消化的条件。胡正新介绍,2013年起,国家加大对新能源汽车的推广力度,根据动力蓄电池的使用寿命推算,预计在明年,动力蓄电池大规模的退役潮将来临。信息沟通不畅、企业合作较少,是退役电池梯次利用中普遍遇到的难题。为推动退役电池的梯次利用,今年5月,江苏省正式成立新能源汽车动力电池回收利用产业联盟。绿色拆解:研发再生技术,实施精准补贴一般情况下,如果容量性能降到30%以下,动力蓄电池就不再能梯次利用,只能拆解报废。电池被拆解后,可回收其中有利用价值的再生资源,例如钴、锂、镍等贵金属。这些资源将再转化为电池的制作材料。这是构建动力蓄电池全生命周期价值链回收利用体系中最后也是最关键的环节。动力蓄电池的拆解方法可以分为物理拆解和化学拆解两种。由于化学拆解中使用的强酸强碱会对环境造成污染和破坏,所以江苏省并不鼓励这种方法。江苏一家新能源公司研发出等离子拆解法,即对废旧锂电池实施等离子分离、固体物分离、气体无害化处理等程序,提取可利用的再生资源。据悉,这种新型拆解方法能够有效地规避强酸强碱的使用,防止损害环境。目前,这项新技术已在省内推广,年处理1万吨的项目即将在明年年中投产。除了拆解过程可能造成污染,高成本也是阻碍退役电池回收再生的难题。据相关拆解企业负责人介绍,广泛使用的磷酸铁锂电池,回收价值较低,处置成本过高,再生收益远不抵其再生成本,这大大影响回收企业的积极性。胡正新介绍,除了通过技术创新降低回收成本,发放补贴也是业内广为认同的方案。为了实现精准补贴,部分地区仿照家电回收补贴的做法,设立专项基金,处置多少、补贴多少;不过,是否适合补贴、如何制定标准、怎样具体操作,还需要进一步的探索。

作者: 沈阳蓄电池研究所新闻中心 来源:人民日报
description
电池能量密度和安全性如何协同提升

调查显示,近期新能源汽车起火事故频发,已成为私人消费市场对新能源汽车接受度不高的原因之一。今年夏季是新能源汽车自燃事故的高发期。相关统计数据显示,在5月到7月的3个月时间里,新能源汽车国家监管平台统计发现了79起电动汽车安全事故,涉及车辆96辆。“新能源汽车行业面临的安全问题主要还是电池安全性和可靠性的问题。”北京大学应用化学研究所教授其鲁表示,“这些问题的出现不是简单的补贴退坡所致,本质还是材料问题和电池本身的技术问题。”行业人士认为,能量密度和安全性同时提升,是电动化时代对电池的必然要求。■方形叠片、无模组 BMS管理是重要方向“电动汽车电池能量密度的提高,不但能解决里程焦虑问题,还能减低电池成本,全世界科学家在这方面做了很多努力。”清华大学锂离子电池实验室主任何向明如是说。据了解,提升能量密度的传统方法有提高压实密度、减薄隔膜、减薄铜铝箔、减少安全设计冗余等。不过,这些传统方法,无法兼顾同时提升能量密度和安全性。目前,很多动力电池企业都在围绕能量密度与安全性协同研究创新性解决方案。电池工艺经历了从圆柱卷绕、方形卷绕、软包叠片、软包卷绕、方形叠片的演变过程。据蜂巢能源科技有限公司总经理杨红新介绍,在兼顾能量密度和安全性方面,方形叠片工艺有着先天优势,不仅能够保持电池密封性,提高密度,还可以降低成本。在保证放电功率性能的同时,提高回充的功率性能,同时降低短路风险。值得关注的是,动力电池逐渐向无模组方向发展。行业人士表示,无模组电池包能量密度较传统电池包提升10%~15%,传统电池包能量密度平均为180Wh/kg,而无模组电池包能量密度可达到200Wh/kg以上。“取消模组之后,释放出的空间不仅可以增大电芯间隙,还可以增大电池距离下箱体边梁的间隙。只要间隙设计合理,远离侧边梁,在提高能量密度的同时还能提高安全性。”杨红新表示,此外,把电池管理系统做好也是一种更低成本、更高效率解决能量密度和安全性之间矛盾的有效方式。■多元材料成为主流由于目前负极材料的能量密度远大于正极材料,所以提高能量密度就要不断升级正极材料。国内外动力锂电池正极材料技术路线主要有3个流派:磷酸铁锂派、锰酸锂派、三元派(NCA/NCM)。用磷酸铁锂作为正极材料,电池充放电循环寿命长,但其能量密度、高低温性能、充放电倍率特性均较差,且生产成本较高,目前磷酸铁锂电池技术和应用已经遇到瓶颈;用锰酸锂作为正极材料,电池能量密度低、高温下的循环稳定性和存储性能较差;多元材料因具有综合性能高和低成本的双重优势日益被行业所关注和认同,逐步超越磷酸铁锂和锰酸锂成为主流的技术路线。三元材料主要以NCM三元和NCA三元为主。在三元材料中,随着镍元素含量的升高,正极材料的比容量逐渐升高。随着人们对电动车续驶里程的要求越来越高,高镍体系的NCM811和NCA材料的研发也越来越迫切。杨红新表示:“由于钴资源的稀缺性,无钴材料可以极大程度降低成本,但高镍无钴电池材料也面临着很多技术挑战,预计未来70%的无钴电池材料有希望开发成功。”“电池技术发展的路径,一条是颠覆性的,一条是渐进式的。目前电池企业大部分都在做渐进式开发。”何向明表示,“可以用红磷做为负极材料,也可以全部用硅,那么整个电池的设计、电解液体系都要做相应改变,这就是颠覆式开发。”中国动力电池创新联盟副秘书长王子冬强调,提升动力电池性能,不仅需要改进正负极材料,还需要兼顾工艺、设计等方面的改进。

作者: 赵琼 来源:中国汽车报
description
大浪淘沙,谁才是高能量密度电池中的最强王者?

【研究背景】高能量密度是电池永恒的追求,得益于锂离子电池(LIBs)的成功商业化,电池的能量密度得到了显著提升。然而,目前的LIBs仍不能满足日益增长的电动汽车和便携式电子设备的需求。各国都对电池的发展作出了规划,如2020年达到300 Wh kg−1,2030年达到500 Wh kg−1,但是按照目前的发展趋势,该目标很难实现。因此,有必要对所有可能的高质量能量密度(GED)和体积能量密度(VED)的电池体系进行系统的理论筛选,以找到比目前LIBs能量密度更高的可充电电池。基于此,中科院物理所李泓研究员团队通过热力学计算获得了以Li、Na、K、Mg、Al和Zn作为负极的1683种基于转换反应电池的理论能量密度及其电动势(EMF)。并以理论能量密度大于1000 Wh kg−1/800Wh L−1和电动势大于1.50 V为筛选标准,筛选出了51中有意义的电池系统。相关成果以“Batteries with high theoretical energy densities”为题发表在国际权威期刊Energy Storage Materials上。【图文解读】1. 计算方法本文采用宏观热力学方法计算电池的理论能量密度。一般而言,任何发生电荷转移的化学反应都可用于电化学储能,反应式如下:若反应的吉布斯自由能为负,则反应在标准条件下自发进行,当反应可逆时,这个反应所做的最大电功等于反应的吉布斯自由能,即中,n为每摩尔反应物转移的电荷数,F为法拉第常数,E为电动势。理论质量能量密度(TGED)和理论体积能量密度(TVED)可分别通过如下公式计算:其中,和分别表示反应物的摩尔质量之和与反应物的摩尔体积之和。电极材料的比容量与自身每摩尔质量可输送的电量有关,计算公式如下:在转换反应中,每个过渡金属离子的电子转移不少于一个,而插层反应中通常为0.5-1.0个。2. 电池的选择电池的选择主要从正极和负极两方面来考虑。选择研究最为广泛的Li、Na、K、Mg、Al和Zn作为负极,其可以与各种各样的正极想配对。目前LIBs主要还是采用商业石墨作为负极,其理论比容量只有372 mAh g−1,目前LIBs在三种应用领域下的性能如表1所示。表1. 三种类型锂离子电池的性能高容量纳米硅具有4200 mAhg−1的理论比容量,且已用于高GED/VED电池,但大的体积膨胀,限制了其容量发挥。通常情况下,电池中所用纳米硅负极的容量主要在420-450 mAh g−1,少有高于600mAh/g。金属锂因其较低的电化学氧化还原电位(−3.040 V vs NHE)和较高的理论比容量(3860 mAh g−1)而成为负极的最终选择,表2给出了这几种负极材料的性能比较。所选的电池正极由原子序数小于54的元素组成,包括纯元素、氟化物、氧化物、氮化物、硫化物、氯化物、碳酸盐和硫酸盐,但未考虑插层化合物的正极,如钴酸锂。表2. Li、Na、K、Mg、Al、Zn的性能比较3. 电池的筛选标准和结果从高能量密度、高电压、低成本和低危害性的角度对电池进行筛选,筛选流程如图1所示。最终,符合标准的电池只有51种,以Li2O为反应产物的O2/Li电池具有最高的理论质量能量密度达到5217 Wh kg−1,O2/Al电池以4311 Wh kg−1的理论质量能量密度排名第二,O2/Mg电池的理论质量能量密度为3924 Wh kg−1,排名第三。图1. 电池筛选流程图不同负极电池的理论质量能量密度和理论体积能量密度比较如图2a-b所示。在锂、镁、铝、钠、钾、锌六种负极中,锂电池的理论质量能量密度含量最高,镁电池和铝电池次之,钾电池和锌电池排在最后;而无论负极是什么,以O2为正极的电池总是具有最高的理论质量能量密度。但从理论体积能量密度角度看,铝电池和镁电池是最理想的电池。整体而言,锂电池、镁电池和铝电池在理论质量能量密度和理论体积能量密度方面比钠电池、钾电池和锌电池更有利。从图2c可以看出,CuF2/Li电池的电动势最高,超过3.5 V。一般而言,氟化物正极比氧化物正极具有更高的电动势。图3d显示了高理论体积能量密度和电动势的铝电池,与锂电池对应,CuF2/Al电池在这九种电池中具有最高的电动势,超过2.4 V,而氧化物正极的理论体积能量密度比氟化物高。图2. 理论质量能量密度和理论体积能量密度(基于正极和负极活性材料)与电池电动势的比较。4. 电池实际能量密度的估算通过设计成软包电池来评估筛选出的51种电池的实际能量密度(由于技术缺陷,气体或液体正极的电池尚未计算出来)。其中电解质由20 μm厚的PEO/LiTFSI复合薄膜构成,软包电池的结构如图3所示。值得注意的是,这51种电池的电动势均在3.6 V以下,低于PEO/LiTFSI的氧化电位,正极活性物质在电极中的占比达到96%,负极为纯锂、钠、钾、镁、铝或锌,N/P比为2(N/P比为正负活性物质容量比),假设密封薄膜和极耳占整个电池的质量的8%,体积的0.1%。图3. 以CuF2/Li为例,基于PEO/LiTFSI电解质的软包电池结构示意图通过估算,理论质量能量密度中排名前20的电池的预测质量能量密度(PGED)如图4a所示,S/Li电池的PGED值最高,为1311Wh kg−1,CuF2/Li电池排在第二位,为1037 Wh kg−1,FeF3/Li电池位列第三,为1003 Wh kg−1,PGED与理论质量能量密度的比值在0.48-0.67,这一结果表明大于1000 Wh kg−1的软包电池是可以实现的。理论体积能量密度中排名前20的电池的预测体积能量密度(PVED)如图4b所示,CuO/Al、Co3O4/Al、MnO2/Al电池的PVED最高,分别为2899 Wh L−1、2834 Wh L−1、2745 Wh L−1,PVED/TVED的比值在0.50-0.53之间,可以看出利用软包电池来达到800 Wh L−1的目标也是可行的。图4. 具有高理论质量能量密度和理论体积能量密度电池的PGED与PVED5. 其他高能量密度电池插层化合物,如富锂层状正极(xLiMO2(1−x)Li2MnO3)的容量超过250 mAh g−1,工作电压超过3.5 V,得到了广泛的研究。采用Li1.25Co0.25Mn0.50O2与单层Li2MnO3超晶格结构耦合的正极甚至能达到400 mAh g−1的可逆能量密度。尽管插层电池可以在短期内实现较高的能量密度,但低的理论能量密度限制了电池的长远发展。氟离子电池是基于金属氟化物/金属(MFx/M')组合通过F−穿梭构成的二次电池。由于金属氟盐的高密度,这些电池具有高于4000Wh·L−1的理论能量密度,远高于商用LIBs。然而低的首效,快的衰减速率,大的体积变化及不安全性等因素阻碍了其商业化应用。有机化合物具有低的分子量和多电子转移能力,这使得它们的理论容量可以轻松超过400 mAh g−1。尽管一些有机电极具有超高的理论容量,但它们的平均电压大多很低。如PTBDT的理论比容量为1116 mAh g−1,但是由于硫醚阳离子的还原反应,其放电平台很低。【总结与展望】根据热力学计算,同时考虑兼具高理论质量能量密度和理论体积能量密度,H2O/Li、S/Li、H2O/Al、H2O/Mg、S/Mg、CuF2/Li、FeF3/Li、MnO2/Li、MoO3/Li等电池具有较强的储能能力。具体而言,锂电池具有最高的理论质量能量密度,而铝电池具有最高的理论体积能量密度。除了基于转换反应的电池外,其他电池如富锂氧化物和氟碳电池也可以考虑作为高理论质量能量密度和理论体积能量密度的替代方案。凭借高的理论极限,基于转换反应的电池是能量存储系统的长期目标。通过对电池能量密度的系统计算和分析,阐明了电池设计的局限性,也为下一代储能技术的发展指明了方向。Wenzhuo Cao, Jienan Zhang, Hong Li, Batteries with high theoretical energy densities. Energy Storage Materials, 2019, DOI:10.1016/j.ensm.2019.12.024

作者: 沈阳蓄电池研究所新闻中心 来源:能源学人
description
车用动力电池简史

1746年,如果不是荷兰的马森布罗克教授不慎将一个带了电的钉子掉进玻璃瓶中,人类或许不会那么早开启电力的时代,第二次科技革命或许也会被延迟几十年。现在更不会出现能够挑战燃油车的电动汽车。但是,从发明电池,到铅酸电池催生电动汽车出世,到锂电池大放光彩,再到用消费级电池“勉强”用于电动汽车,再到整车企业反向研究、生产车规级动力电池,真正达到车规级的动力电池,逐渐出现,但还未全行业普及。中国目前是全球第一大动力电池生产国,但在以往的探索中,并没有起到多大的技术引领作用。回溯这近两百年的车用动力电池历史,也许会帮助理解,怎样的动力电池,才是真正合格的车用动力电池。1、电池出世电池的起源还要从一只青蛙说起。1780年的一天,意大利解剖学家伽尔瓦尼在实验室解剖青蛙。当他的助手两手拿着金属器械同时碰触青蛙大腿时,其腿部肌肉会立刻抽搐一下。他认为,这种现象是因为动物躯体内部产生了一种电,将其称之为“生物电”,并发表了论文。不过,这位解剖学家弄错了。与他同时代的意大利物理学家伏特(是的,电压单位伏特,就是为了纪念他。有的译为:伏打),经过多次实验确认,青蛙的肌肉之所以能产生电流,是肌肉中某种液体在起作用。1799年,伏特实验发现,两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。伏特制成了世界上第一个电池——“伏特电堆”。伏特向拿破仑展示伏特电堆自此,两个金属片+液体组成了电池最初形态,后来很多物理学家在这一模式下继续探索。但是,由于有液体,而且往往用的是硫酸,所以搬运很不方便,应用非常有限。“干电池”在物理学家的努力下出现了。不过,如同现在很多“固态电池”,其实是半固态一样,这里的“干电池”,其实用的是糊状电解液。这里,法国的雷克兰士(George Leclanche) 1860年发明的碳锌电池,堪称代表。干电池的子孙后代枝繁叶茂。即便到现在,干电池还有100多种,并且大量产出。最早发明的碳锌电池,依然是现代干电池中产量最大的电池。干电池解决了方便搬运的问题,但是用完即废,无法重新利用。能不能有可以多次充电放电,反复使用的蓄电池?2、铅酸电池助力电动汽车首次繁荣其实,在干电池之前,蓄电池已经先面世了,只是并没有广为人知。1859,法国物理学家加斯东·普兰特(Gaston Planté)发明了铅酸蓄电池。对于电动汽车从业人士来说,此处应该鼓掌,终于电池有机会用到汽车上了。普兰特发明的铅酸电池原型法国人普兰特的铅蓄电池,在使用一段时间,电压下降后,可以给它反向电流,使电池电压回升,从而实现反复使用的目的。铅蓄电池的储能和反复充电的特性,让正在寻找新交通工具的另一拨科学家们注意到了。早在18世纪第一次工业革命,蒸汽机的发明推动了机器的普及,交通领域的革新也随之展开,但是由于蒸汽车辆太过笨重,而且速度还很慢,经常在城内到处的乱撞,引起了各种事故的发生,没有大规模普及。因此,马车仍然是人们出行的主要交通工具。欧洲地区和美国都有大量的马车租赁公司。富人可以拥有私人马车,其他人只能租赁马车使用。人们亟需一种便宜、简洁、安全的出行工具,铅酸电池的发明,提供了这种可能。1881年,法国科学家卡米尔·阿方斯·富尔(Camille Alphonse Faure)改进了电池的设计,第一辆用铅酸电池为动力的三轮车诞生,车重为160kg,但时速仅为12km/h。第一辆铅酸电池电动汽车同年,另一个法国人古斯塔夫·特鲁维利用这种电池制造出世界上第一台能够正常运转的电动车。在搭载一位乘员的情况下,这台连人带车106kg的三轮车,能以15km/h的速度行驶16km。不过这时的电动车还不能与马车竞争。一般来说,马车的时速在20km左右,最快时速可达60km,明显低于马车。1884年,英国发明家和实业家英国发明家和实业家托马斯·帕克(Thomas Parker)用他自己专门设计的高容量可充电电池,在伦敦制造了第一辆实用的电动汽车。1884年生产的第一辆量产电动车电池性能的提升,电动车的优势得以凸显。当时的电动车不仅比燃油车安静,而且其可靠性要远高于燃油汽车,并且更易于驾驶,并且价格低廉,是名流绅仕的首选。随着道路的逐步扩建和完善,人们对于车辆的用途不仅仅是城市代步和显示身份了,对于长途旅游出行也有了需求,电动汽车续驶里程短的弊端显现,当时电动车续航里程普遍在40-65公里范围,最高时速约在30公里/小时,已经不能够满足消费者需求。1899年,镍镉、镍铁电池被发明出来,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制,不过,这也使得镍正极材料体系的电池开始进入人们视野。这一阶段主要是电池在车辆上应用的探索阶段。能够应用在汽车上的只有铅酸电池,但是其体积大、质量大、能量密度小、功率密度低,如果使用铅酸电池驱动家用汽车行驶200km以上,需要将近1吨的电池,无法达到实用,加上早期电力传动系统的制造成本过高等问题,没有最终流行。比电池汽车晚诞生的燃油汽车,则在欧美实业家的努力下,从车厂走向街头。1885年,戴姆勒和本茨几乎同时制成了汽油发动机,装在汽车上,以每小时12公里的速度行驶,获得成功。此外,意大利、俄国、美国的发明家也制造出内燃机汽车。1908年,福特开发出T型车,燃油汽车开始进入平民家庭。汽车进入了内燃机时代。而电动汽车受制于电池,并没有明显的进步,在长达半个多世纪陷入停滞。3、石油危机,各国加注电池研发燃油车大发展了七八十年,几乎是顺风顺水,但是问题来了。由于汽车普及,人们已经离不开石油。但是到了20世纪下半叶,全球连续发生了三次石油危机。特别是1973年,第四次中东战争打响,石油输出国组织(OPEC)宣布石油禁运、暂停出口,油价上涨,导致第一次石油危机。美国、英国和日本等发达国家意识到,将能源命脉掌握在其他国家手里是件危险的事情,必须摆脱对石油的严重依赖。自此,很多国家开始投入大量资源研究电池技术。这使得电池技术的发展迎来发展的新契机。另外,由于汽车广泛使用,汽车拥有量高,污染物扩散条件差的城市开始出现空气污染问题。现在苦恼中国的雾霾问题,在上世纪四十年就开始困扰美国加州人民。经过研究,确认汽车尾气是雾霾“元凶”之后,加州人民开始了持之不懈的抗霾斗争,主要途径,就是推动汽车减排,这也极大促进了车企探索汽车电动化,也就是把越来越多的电池,装到车上,用电力驱动。此时,电池技术的进步,为汽车电动化也提供了基础。(1)锂电池研发取得成果2019年的诺贝尔化学奖,授予了三位对锂电池发明有巨大贡献的三位科学家。他们的研究,正是在人类努力摆脱化石燃料,开启清洁电力时代的最有力探索成果。1976年,英国的科学家M.Stanley Whittingham提出了锂电池概念,并造出了可以充放电的锂电池,电压超过2V,但是安全性上还有很大问题,可以称得上是锂电池的奠基人。四年后,美国的John B. Goodenough研究出了钴酸锂电池。这个电池的电压比斯坦利研究出来的锂电池高一倍(4V)。1985年,日本吉野彰(Akira Yoshino)在Goodenough成果基础上,用更安全的锂离子替代了纯锂,发明了采用碳材料做负极的锂离子电池,从而让锂电池获得了更高的稳定性,确立了现代锂离子电池的基本框架。这三位诺贝尔化学奖获得者的努力,推动了锂离子电池的诞生和应用,电池进展就此加快。1997年,John B. Goodenough又开发出低成本的磷酸铁锂LiXFePO4正极材料,加快了锂离子电池的商业化。磷酸铁锂的优势在于安全,且充放电性能好、廉价、对环境无污染,具有优异的电池循环寿命、低自放电(库存存放寿命非常长),这使传统铅酸电池、镍氢、镍镉电池黯然失色。诺贝尔化学奖获得者(2)“前锂电时代”车企尝试不同电池装车在锂电池商业化之前,车企试图将其他新发明应用的电池装载在汽车,作为驱动能源。1990年,欧洲“城市电动车”协会成立,在欧共体组织内有60座城市参与,该协会帮助各城市进行电动汽车可行性的研究和安装必要的设备,并指导电动汽车的运营。欧洲的电动汽车中,标致106车型最为成功,其采用的是镍镉电池。当时欧洲各国的政府部门都在大量使用这款车。从1995年底开始,欧洲第一批电动汽车批量生产,此后欧洲各国都在继续发展电动汽车,取得了不小的成果。1996年,世界第一辆现代电动汽车通用EV1开始量产。早期的EV1使用铅酸电池组,续航仅为96公里。后期车型升级后,续航可以达到160公里。最后,EV1使用镍合金电池组,续航能够到达260公里。虽然,通用在不断升级电池,但是续驶里程过短的EV1仍然找不到销路,最终只生产了2000多辆。通用汽车只好在2002年宣布放弃该项目。绝大部分EV汽车都被销毁,仅存的一些进了博物馆。比如史密森学会下属的国立美国历史博物馆,你才能看到EV1。整体来看,EV1电池续航能力还是不足,有安全性的缺陷,当时的电池性能根本不能满足于乘用车的需求。这一阶段,车企为了提高车辆的安全性和续驶里程,开始尝试各种各样的电池。镍氢电池具有稳定性高、生产成本低、低温性能好、回收价值高等优点。但是它的缺点也比较明显,能量密度较低,并且循环次数也并不太高,因此,纯电驱动的车辆采用镍氢电池并不合适。电动汽车发展还需要能量密度更高、循环性能更好的电池。为什么不用锂电池?因为此时锂电池还没进入商业化阶段。4、锂离子电池推动电动汽车二次繁荣将锂离子电池商业化的,是日本人。吉野彰提出焦炭/LCO体系的锂离子电池之后。索尼将这一体系锂离子电池商业化,一开始重量能量密度仅为80Wh/kg左右,体积能量密度仅为200Wh/L(4.1V)。但是,此后,锂离子电池的发展进入了快车道,各种材料体系:钴酸锂、磷酸铁锂、三元作为正极,软碳、硬碳乃至硅碳作为负极,以及各种锂离子的变种层出不穷,性能不断攀升。业界一度以为,电池性能会像摩尔定理——每18个月翻一番——的速度提升。虽然“摩尔定理”在电池上并未发生,不过其进度和前景,让人们难以不敢轻视其想象空间。锂离子电池以容量大,电压高,循环性能好等优越性能在众电池中脱颖而出,成为最理想最有前途的电池。锂离子电池显然比铅酸、镍氢更适合作为车辆动力。总体而言,商业化以后的锂离子电池能量密度、循环寿命、充电倍率和安全性都空前地高,虽然比汽油能量密度还相差甚远 ,但在使用零排放、技术进步前景、规模化应用成本下降的背景下,逐渐被汽车厂接受。(1)锂离子电池上车1992年,日产开始研发电动汽车。日产与其他汽车企业不同的是,在研究电动汽车的同时,也在研究电池。根据日产的解释,当时市面上根本没有符合他们需求的电池,为了满足自己的需求及降低成本,研发电池势在必行。这或许是历史上第一次专门为车辆研发动力电池。1997年日产制造出汽车世界上第一辆使用圆柱锂离子电池的电动车Prairie Joy EV。这款车最高时速120公里/小时,每次充电行驶里程超过200公里——可以说,已经是像模像样的汽车了。世界上第一辆使用锂离子电池的电动车Prairie Joy EV自此,锂离子电池汽车正式登上舞台。或许是看到了动力电池的发展前景。2000年,材料界著名企业LG化学,也在密西根研发基地开始研发动力电池。2009年,LG化学也开始与现代起亚研发动力电池。此外,全球还有很多知名、不知名公司在研究电池,并试图作为车用动力电池,包括中国的比亚迪。比亚迪有多年电子产品和电池的研发生产经验。创始人王传福2003年收购秦川汽车,虽然一开始造的是燃油车,但心念所系,就是要做电动汽车。在电池性能有限的条件下,比亚迪的商业化路线是先做双模汽车。也在2003年,比亚迪开始立项研发双模电动汽车,并在2008年推出了F3DM双模电动汽车。双模电动汽车是燃油和电驱并行的两套系统驱动,还不是纯电动汽车。(2)特斯拉大胆抢得头筹各路英雄戮力研发,但都不太敢将电池用于纯电动汽车上,进行商业化。第一个吃螃蟹的,是如今天下皆知的特斯拉。这家2003年创立的公司,以伟大的电气工程师尼古拉·特斯拉为名,就是以开发电动汽车为目标。特斯拉的创始人之一马丁·艾伯哈德,是一个跑车爱好车,同时对于美国石油对中东的进口依赖以及对于全球气候变暖有着深刻的担忧。这最终促使他与马克·塔彭宁(Marc Tarpenning)共同创立特斯拉。两位创始人对电池并没有自研和生产的能力,唯一的选择就是去市场上选取合适的电池。经过神农尝百草般的试用,他们选中了已经长期标准化生产,一致性最好、能量密度较高、成本较低的18650圆柱型电池。2008 年,特斯拉Roadster 跑车面世。这应该是锂电池首次进入商用纯电动汽车。不过,18650电池是电子产品常用电池,其散热和安全,并不是为汽车产品设计的。为此,特斯拉运用了号称世界上最顶级的电池管理系统,来保证电池的稳定性。但是,6831节18650电池组成的电池系统,在传统汽车行业看来,是一个业余,至少是妥协的选择。(3)车用锂电池厂出现其他企业没抢到头筹,但也是紧锣密鼓,而且从出身和研究方向,都更像正规军。2009年1月7日,成立7年的A123宣布,计划在美国密歇根州东南部建电池厂,并称这将是“第一个车用锂电池工厂”。A123,成立于2001年,一开始并不是一家车用电池的生产企业。但它戴着MIT研究人员的光环。该企业的产业化始于电动工具用电池。刚创立时,只有美国能源部的科技专案经费10万美元。经过几年的发展,公司不断发展壮大,发展路线也日渐清晰,他们开始主攻动力电池市场,车用动力电池市场是其重中之重。就在A123宣布成立车用锂电池厂的同时,日产与NEC也在组建合资公司AESC。AESC主要从事锂电池单元、模块及锂电池组的生产,产品供应日产的电动车和混合动力车,当时的目的也是取代镍氢电池在电动汽车中的应用。2010年底,日产第一款纯电动汽车聆风(Leaf)上市。相比小批量的特斯拉Roadster,聆风真正意义上实现了电动汽车量产销售。A123和AESC应该是最早为电动汽车专门研发电池的企业。A123的独到之处是,其有办法将锂离子电池的磷酸锂铁正极材料,制造成均匀的纳米级超小颗粒,因颗粒和总表面面积剧增而大幅提电池的高放电功率,而且,整体稳定度和循环寿命皆未受影响。A123凭借其独到的技术迅速发展壮大,还获得美国能源部高达1500万美元的新一代HybridElectricVehicle(HEV)电池发展合约,这更代表其已经得到国家和国际汽车大厂的重视与信任,成为清洁能源汽车产业的标杆性企业。当然,A123也与美国通用、菲斯克、德国宝马等主流车企建立了供应关系。即使专业如A123,还是发生了大规模的召回事件。2012年,由于安装于菲斯克卡玛电动车上的动力电池在制作上存在缺陷,导致这些电池组提前失效,性能下降、寿命缩短。A123不得不对电池进行召回。2012年7月,这家掌握着磷酸铁锂电池的核心技术的企业,在累计亏损约7亿美元的背景下申请破产,最后被万向集团收购。另一边,AESC发展要顺利得多。AESC生产的锂离子动力电池主要搭载在日产聆风以及部分混动车型上。2014年全球动力电池供应商排名中,AESC仅次于特斯拉御用电池企业松下,位于榜单第二位。AESC一开始选择锰酸锂动力电池路线,产品以安全性著称于世,在能量密度上却并不突出。虽然AESC后来不断提升能量密度,但由于其供应品牌相对单一,导致其规模上不去,成本下不来。AESC最终也被日产转出部分股权,被中国的远景集团收购,但AESC还在向日产供货,也尝试抓住中国市场的机会。A123和AESC两家“正规军”,在能量密度、充放电倍率上表现不错,但在生产使用环节,一个败于安全,一个胜于安全。AESC装载的聆风电动汽车,全球起火案例屈指可数,和特斯拉已经数十起起火案例相比,安全性要高过一个量级。AESC的产品,在安全性上,无疑已经接近汽车级产品的要求。业界还在担心的是,AESC产品的能量密度还不够,一开始衰减也比较厉害。在此基础上,电动汽车和电池行业,吹响了车用动力电池研发生产的号角。因为,全球电动化形势,已经大为不同。特斯拉在Roadster之后,渡过美国金融危机,迎来Model S的巨大成功,后续Model X、Model 3更是将其推上全球电动汽车标杆之位。电动汽车风潮刮起。另外,全球各国政府日益重视环境问题,而内燃机汽车又曝出多桩排放造假丑闻,传统车企面临巨大压力。中国在发展电动汽车上投入重注,气势汹汹,令传统汽车大国心惊……诸多因素叠加,电动汽车潮流席卷全球,而电动汽车的核心竞争力,系于电池。越来越多的车企、电池企业,开始研发动力电池,希望抓住电动汽车的牛鼻子。5、向“车规级”动力电池进发新一轮动力电池的争夺,不再是特斯拉“有什么就用什么”逻辑,而是沿着A123和AESC引导的方向,以汽车的需求出发,定义车用动力电池,要求电池企业配合实现。在决定发力新能源汽车后,大众、宝马、戴姆勒、现代等企业不约而同向上游布局动力电池,重金投入研发不说,还参与电池生产。他们很多都建立了电池研发中心,有的设立独资或合资企业生产电池。他们起手的标准,自然而然地,就是引用车规级零部件的要求,做车规级动力电池。中国将新能源汽车作为战略新兴产业,投入巨大资源。中国的动力电池企业也较早实现装车并商用化,也开始了车规级动力电池的探索。其中代表的企业是比亚迪和宁德时代。比亚迪在F3DM之后,也在2011年开始推出纯电动车型,并且从电动大巴、电动出租车切入,逐渐扩展到私人电动汽车产品。比亚迪既产汽车,又产电池,在应用层面走在前列。比亚迪长期是全球第一大电动汽车生产商,如今虽然被特斯拉超越,但仍然是领先企业之一,在动力电池上,也一直按照汽车需求在改进提升。比亚迪造车历史不算长,尚不能代表汽车企业的标准,但是,近期,丰田、奥迪这样的传统汽车豪强,都表示要和比亚迪合作,采用比亚迪的动力电池。这表明,比亚迪的动力电池,已经接近汽车世界级标准。另一家企业,宁德时代成立于2011年,其前身是消费电池巨头ATL。宁德时代第一个动力电池业务就是与华晨宝马合作。宝马集团曾向宁德时代提供了800多页纸的动力电池生产标准。为帮助宁德时代生产出符合华晨宝马要求的动力电池,宝马集团高级工程师在宁德一待就是两年多。最终,宁德时代的动力电池装载到了宝马多款电动、插电式混动上,目前已经是宝马第一大动力电池供应商。由于宝马的“认证”效应,其他车企认为,宁德时代的产品应当是符合车用动力电池标准的,因此纷纷采购。2018年,宁德时代成为全球第一大动力电池供应商。到2018年,中国动力电池累计产量70.6GWh,占全球一半左右。我们推算,全球累计装载到汽车上的动力电池,已经近400GWh。但是,对于汽车用动力电池,是否我们已经充分掌握了?电池用在汽车上,是不是已经没有问题了呢?谨慎地说,并不是。比如安全性隐忧。特斯拉电动汽车风靡全球,但其起火事件不少。尽管马斯克历次举证,起火概率并不比燃油车高,但仍然难解外界质疑。一个有力的质疑是,燃油车的起火,往往源于车主滥用。而电动汽车起火,可能车主、车企都不知道是什么原因。在多起起火事件之后,特斯拉还调低了动力电池可用区间,显示其对动力电池的耐久性并无信心。比如能量密度和成本还有待进步。虽然现在一辆主流电动汽车续航里程已经超越400公里,比其前辈提升了很多,但和燃油车还有距离。另外,因为电池贵,一辆电动汽车,要比燃油汽车要贵不少。比如全生命周期的一致性还需要提升,在使用两三年之后,很多电动汽车续航里程大打折扣,但燃油车并无此问题……问题涉及各个方面,总而言之,是动力电池,能否达到像其他车用核心零部件一样的标准?也就是说,动力电池是不是达到了“车规级”?(1)“车规级”概念引入动力电池车企、动力电池都在潜心研发车规级动力电池。不过,一个新玩家,把“车规级”概念,推动成为全行业和媒体热议的话题。2019年11月27日,蜂巢能源常州动力电池工厂投产。他们提出了“车规级”电池厂概念。蜂巢能源脱胎于2012年成立的长城汽车动力电池项目组。它天生带着汽车厂的视角,去寻求合格的动力电池。2016年,该项目组升级为动力事业部;2018年2月,又成为蜂巢能源公司,从长城汽车独立,走向研发生产动力电池之路。其初心,就是要提供符合汽车要求的动力电池,也就是车规级动力电池。(2)车规级动力电池生产要求初步探索什么是车规级动力电池?虽然,现在有不少动力电池检测实验室、商业认证机构,但是在电动汽车应用方兴未艾之际,车规级动力电池的要求和知识,还没有得到行业性的总结和推行,而是散落在较早开始探索的车企、电池企业内部。

作者: 王凌方 来源:电动汽车观察家
description
IBM宣称:电池研发取得新突破

参考消息网12月23日报道台媒称,美国科技公司IBM宣称已研发出一种电池设计,采用从海水萃取而成的材料,无需使用成本高昂的钴,为迫切寻找替代矿物原料的企业带来好消息。据台湾《经济日报》12月20日报道,IBM已和戴姆勒旗下的梅赛德斯·奔驰的研究部门、日本电池电解质供应商中央玻璃公司及电池制造商Sidus等公司合作,共同促进这款电池设计的商业发展。报道称,IBM研究部门副总裁杰夫·韦尔泽说,目标是在一年左右的时间推出第一款正常工作的原型电池。不过,IBM最终未必会采用这款设计来制造产品。报道指出,电动车电池制造商正努力减少锂电池的钴含量,且随着电动车市场持续扩张,可能导致钴供给短缺。IBM表示,这项电池技术已证实比锂电池更优异,包括成本更低、充电时间更短,能源效率也更高。另外,IBM也与东京大学合作开发量子运算的初步实际应用,来促进量子运算的发展。根据这项协议,IBM为科学用途设计的量子运算系统Q System One,将安装在IBM设在日本的一座设施,这在日本地区是首例。报道称,IBM正与“字母表”公司及微软等科技公司竞争谁最先把量子运算技术商业化,这项技术有助加速人工智能及化学等领域未来几年的发展。

作者: 沈阳蓄电池研究所新闻中心 来源:参考消息网